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Contributions to Algebraic Geometry. Impanga Lecture Notes, Piotr Pragacz (ed.)
Geometry and Arithmetic, Carel Faber, Gavril Farkas and Robin de Jong (eds.)
Derived Categories in Algebraic Geometry. Toyko 2011, Yujiro Kawamata (ed.)
Advances in Representation Theory of Algebras, David J. Benson, Henning Krause and  

Andrzej Skowroński (eds.)
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Preface

Pavel Exner was born in Prague onMarch 30, 1946. After his studies at the Faculty of
Technical and Nuclear Physics1 of the Czech Technical University and at the Faculty
of Mathematics and Physics (FMP) of the Charles University in Prague, he earned his
MSc-equivalent degree in 1969 from the Charles University on the basis of his thesis
on the theory of inelastic e-p scattering. In the subsequent years he continued to work
at the Department of the Theoretical Physics of FMP. He was primarily interested in
the quantum theory of unstable systems and, in�uenced by M. Havlíček, also in the
representations of Lie algebras. In 1978 he left for the Joint Institute for Nuclear
Research (JINR) in Dubna, where he spent 12 fruitful years.

In the 1970’s he was not allowed to defend his CSc (PhD-equivalent) thesis on
unstable systems at the Charles University, for the reasons which had nothing to
do with science and which nowadays nobody would understand. In 1984, for the
same reasons, he changed his home af�liation to the Nuclear Physics Institute of the
Czechoslovak Academy of Sciences2 at Řež near Prague where he still works. In
Dubna, Pavel started to be interested in path integrals and earned his CSc degree on
this subject from JINR in 1983. The results of his efforts in the study of open quantum
systems and path integrals are summarized in the monograph Open quantum systems

and Feynman integrals [1]. He was awarded several prizes, in particular, the JINR
Prize in theoretical physics.

Starting from the 1980’s, Pavel initiated his works on solvable models in quan-
tum mechanics with particular attention to contact interactions supported by points,
curves and surfaces. A long series of his papers in this �eld is still far from its end.
His mathematically rigorous studies of quantummechanical problems and his univer-
sity lectures also gave rise to a monograph on the theory of linear operators, written
jointly with J. Blank and M. Havlíček; �rst as a text book for graduate students and
then as a book for active researchers in mathematical physics and applied mathemat-
ics. By now the book exists in three editions, each substantially upgraded: [2], [3],
and [4].

One of the most important of Pavel’s results is the discovery of the existence of
bound states in curved quantum waveguides, i.e., for quantum particles con�ned in
the two or three dimensional tube-like regions. His early papers on this subject with
P. Šeba and P. Št’ovíček [5] and [6], together with that of Goldstone and Jaffe [7],

1 Presently Faculty of Nuclear Sciences and Physical Engineering.
2 Presently Nuclear Physics Institute of Czech Academy of Sciences.
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started the development of this new �eld in mathematical physics in which Pavel
remains to be one of the leading scientists. Theory of quantum waveguides is sum-
marized in the recent book [8].

In recent years Pavel has been working mainly on the theory of the so-called leaky
quantum graphs where the particle is transversally bounded by a contact type inter-
action to the graph-like structure, bounded or with unlimited leads. These structures
have attracted a lot of attention in the mathematical physics community over the past
decade. Pavel has contributed to this rapidly developing research area by publishing
numerous works on the subject on one hand, and by organizing a series of meetings
and programmes for specialists in the �eld on the other hand.

At present, Pavel Exner is an author of more than 250 original papers with about
3300 total citations. He is also a member of several editorial boards and professional
societies among which is the Academia Europaea, just to mention one of them.

A substantial part of Pavel Exner’s scienti�c activity is dedicated to collaborations
with students and young scientists. Since his return from Dubna in the early 1990s
more than twenty Ph.D. students and postdocs worked under his supervision. Many
of them have later continued their career in the academy and became independent
researchers.

Besides his research and teaching activities, Pavel has not failed to serve the math-
ematical physics community also as an organizer. He founded the series of con-
ferences “Mathematical Results in Quantum Theory” (QMath) and personally orga-
nized a number of them. The �rst QMath conference was held at Dubna in 1987, the
QMath13 took place at Atlanta in 2016. In 2009, Pavel was the main organizer of
the XVI International Congress on Mathematical Physics in Prague. He initiated the
foundation, and for a number of years he has been serving as the scienti�c director,
of the Doppler Institute for mathematical physics and applied mathematics, a group
of mathematical physicists and mathematicians from a few Czech institutions col-
laborating and having common seminars since 1993. Pavel was the president of the
International Association of Mathematical Physics in 2009–2011, vicepresident of
European Research Council in 2011-2014, president of the European Mathematical
Society for 2015-2018 to mention just his most important duties. Needless to say that
Pavel always tries to support and push up his students and colleagues. The picture
would not be complete without mentioning Pavel’s family, his wife Jana with whom
he had lived since marriage in 1971, three daughters, Milena, Hana, and Věra, and
�ve grandchildren.

The present proceedings collect papers submitted to celebrate Pavel’s seventies
birthday. Most contributions treat subjects closely related to Pavel’s scienti�c in-
terests; quantum graphs, waveguides and layers, contact interactions including time-
dependent ones, Schrödinger and similar operators on manifolds or on certain special
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domains with special potentials, product formulas for operator semigroups. Other
papers deal with in�nite �nite-band matrices, abstract perturbation theory, nodal
properties of the Laplacian eigenfunctions, non-linear equations onmanifolds, stochas-
tic and adiabatic problems, and some issues in quantum �eld theory. All together they
provide various examples of applications of functional analysis in quantum physics
and partial differential equations.

Jaroslav Dittrich

Hynek Kovařík

Ari Laptev
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Relative partition function of Coulomb plus delta interaction 1
Sergio Albeverio, Claudio Cacciapuoti, and Mauro Sprea�co

Inequivalence of quantum Dirac �elds of different masses and the

underlying general structures involved 31
Asao Arai

On a class of Schrödinger operators exhibiting spectral transition 55
Diana Barseghyan and Olga Rossi

On the quantum mechanical three-body problem with zero-range

interactions 71
Giulia Basti and Alessandro Teta

On the index of meromorphic operator-valued functions and some

applications 95
Jussi Behrndt, Fritz Gesztesy, Helge Holden, and Roger Nichols

Trace formulae for Schrödinger operators with singular interactions 129
Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik

An improved bound for the non-existence of radial solutions of the

Brezis–Nirenberg problem in Hn 153
Rafael D. Benguria and Soledad Benguria

Twisted waveguide with a Neumann window 161
Philippe Briet and Hiba Hammedi

Example of a periodic Neumann waveguide with a gap in its spectrum 177
Giuseppe Cardone and Andrii Khrabustovskyi

Two-dimensional time-dependent point interactions 189
Raffaele Carlone, Michele Correggi, and Rodolfo Figari



xii Contents

On resonant spectral gaps in quantum graphs 213
Ngoc T. Do, Peter Kuchment, and Beng Ong

Adiabatic theorem for a class of stochastic differential equations on a

Hilbert space 223
Martin Fraas

Eigenvalues of Schrödinger operators with complex surface potentials 245
Rupert L. Frank

A lower bound to the spectral threshold in curved quantum layers 261
Pedro Freitas and David Krejčiřík
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Ondřej Turek

Comments on the Chernoff
p

n-lemma 565
Valentin A. Zagrebnov

List of contributors 575





Relative partition function

of Coulomb plus delta interaction

Sergio Albeverio, Claudio Cacciapuoti,

and Mauro Sprea�co

The authors are very pleased to dedicate this work to Pavel Exner,

on the occasion of his 70th birthday. He has always been for us

a source of inspiration, and we are very grateful to him for his support.

1 Introduction

The present paper discusses a problem related to three main areas of investigations, in
mathematics and physics: the theory of quantum �elds (in particular thermal �elds),
the study of determinants of elliptic (pseudo differential) operators, and the study of
singular perturbations of linear operators. The problem providing the link between
these areas originated with a theoretical investigation by H. B. G. Casimir [20] who
predicted the possibility of an effect, called “Casimir effect,” of attraction of parallel
conducting plates in vacuum due to the presence of �uctuations in the vacuum energy
of the electromagnetic quantum �eld.

Since the experimental con�rmation of this effect by Spaarnay [65], about ten
years after the work of Casimir, both theoretical and experimental studies of “Casimir
like effects” have received a lot of attention. In particular the temperature correc-
tions were �rst discussed by M. Fierz [33] and J. Mehra [49], we refer to the mono-
graph [12] for more references and details on the effects of temperature. On the other
hand, its dependence on the geometry of the plates and the medium (even attractive-
ness can become repulsion according to changing geometry) has been discussed in
several publications, see, e.g., the books [12], [19], [28], [50], and [52], the survey
papers [11] and [59], and, e.g., [10], [14], [15], [18], [20], [22], [24], [25], [26], [27],
[29], [47], [54], [57], [60], and [62].

The physical discussion of the Casimir effect is also related to the one of the
Van der Waals forces between molecules, see [52]. It has also many relations to
condensed matter physics, hadronic physics, cosmology, and nanotechnology, see,
e.g., the references in [11], [19], [12], [28], [50], [52], and [59].
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Theoretically the Casimir effect arises when computing the difference between
two in�nite quantities, namely the vacuum energy of a quantum �eld with or without
a certain “boundary condition.” More generally it is a phenomenon related to the
difference of two Green’s functions associated with hyperbolic or elliptic operators.
Such problems are also of interest in geometric analysis, particularly since the work
by W. Müller [53] and M. Sprea�co and S. Zerbini [70]. The latter works are related
to the introduction by Ray and Singer [61] of a de�nition of determinants for ellip-
tic operators on manifolds via a zeta-function renormalization (see also, e.g., [48]
and [55]). By this procedure one can de�ne log.detA/�1=2, for A self-adjoint, pos-
itive, in some Hilbert space, via the analytic continuation at s D 1=2 of the zeta-
function associated with A, de�ned for Re s suf�ciently large as

�.sIA/ WD
X

�2�C.A/

��s

�C.A/ being the positive part of the spectrum of A. Setting

Z WD .detA/�1=2;

one has the de�nition of the “partition function”

“ Z D
ˆ

ˆ

e�S.'/d' ”,

S.'/ WD .'; A'/, associated with a (Euclidean) quantum �eld with covariance oper-
ator given by the inverse of A (' is the �eld, ˆ the space of “�elds con�gurations”).

In turn, it is well known that partitions functions Z arise as normalizations in
heuristic Euclidean path integrals

“ Z�1
ˆ

ˆ

e�S.'/f .'/d' ”,

f being complex valued functions (related to “observables”), see, e.g., [1] and [71].

On the other hand it was pointed out by Hawking [41] and, independently, Figari,
Høegh-Krohn, and Nappi [34], that there is a strict relation between Euclidean vac-
uum states in de Sitter spaces of �xed curvature and temperature states of Euclidean
states. Hawking used the Ray-Singer de�nition of a partition function related to A
to compute physical quantities of the Euclidean model. For wide-ranging extensions
of these connections see, e.g., [6], [7], [31], [32], [35], [36], [37], [51], [53], [66],
and [68].
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Another application of the zeta function is in the computation of the high tem-
perature asymptotics of several thermodynamic functions such as the Helmholtz free
energy, internal energy, and entropy, see, e.g., [13] and references therein.

As pointed out in [53] and [67], [68] and [69], considering the relative zeta-
function of a pair of elliptic operators A, A0, leads to de�ne, via a relative zeta-
function, a relative determinant including A and A0, and a Casimir effect can be
discussed relatively to the pair .A; A0/. In fact, the strength of the Casimir effect is
expressed by the derivative of the relative zeta-function at 0. These considerations are
also related to the study of relative traces of semigroups resp. resolvents associated
with pairs of operators. The study of such relative traces has its origins in quantum
statistical mechanics [8].

The case whereA0 is the Laplace–Beltrami operator on S1�R3, andA is a point
perturbation of A0 has been discussed in details in [70] and [3]. For the extended
study of point interactions on Rd , d D 1; 2; 3, see [1], [4], and [5]. The case where
Rd is replaced by a Riemannian manifold occurs particularly in [23] (who points out
its possible relevance in number theory), see also [21], [32], and [46].

For further particular studies of point interactions in relation with the Casimir
effect see [2], [4], [14], [15], [38], [40], [50], [43], [58], [63], and [64].

Particularly close to our work is the result in [3] whereA0 is the half space x3 > 0
in R3 and A is taken to be the sum of two point interactions located at .a1; a2; a3/
and .a1; a2;�a3/, a1; a2 2 R, a3 2 RC. The relative trace of the resolvents was
computed at values of the spectral parameter � such that Im

p
� > 0, and the spec-

tral measure was constructed. Moreover the asymptotics for small and large values
of the spectral parameter was found. Furthermore the relative zeta-function and its
derivative at 0 has been computed and related to the Casimir effect [3].

The present paper extends this kind of relations to the case of the pair .A; A0/,
where A0 is the operator �� with a Coulomb interaction at the origin acting in
L2.R3/, and A is a perturbation of A0 obtained by adding a point interaction at the
origin. The construction of A0 and A is based on [4], Chapter I.2. In order to de�ne
and study the relative partition function we use explicit formulae for the integrals of
the Whittaker’s functions which enter the explicit expression of the resolvent of ��
with a Coulomb interaction.

Such explicit formulae do not exist in the situation where the point interaction is
not centered at the origin. In this situation an alternative approach would be to use
series expansions to compute the integrals. It turns out that this idea does not seem
feasible due to the slow decay of the Coulomb interaction at in�nity. On the other
hand, the case of potentials with faster decay at in�nity should be treatable in this
way, replacing the explicit formulae by methods of regular perturbations theory.
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The structure of the paper is as follows. In Section 2 we recall the general de�ni-
tion of the relative partition function associated to a pair of non-negative self-adjoint
operators and its relation with the relative zeta function. In Section 3 we study the
perturbation of the Laplacian by a Coulomb and a delta potential centered at the ori-
gin. In Section 4 we study the associated relative partition function of the Coulomb
plus delta interaction.

2 Relative partition function associated to a pair

of non-negative self-adjoint operators

This section presents a generalization of themethod introduced in [70] to study the an-
alytic properties of the relative zeta function associated to a pair of operators .A; A0/
as described below (see also [53]). We assume here that logarithmic terms appear in
the expansion of the relative trace, and this will produce a double pole in the relative
zeta function, and in turn a simple pole in the relative partition function.

2.1 Relative zeta function

We denote byR.�IA/ � .��A/�1 the resolvent of a linear operatorA. � is in the re-
solvent set, �.A/, ofA, a subset ofC. The relative zeta function �.sIA;A0/ for a pair
of non-negative self-adjoint operators .A; A0/ is de�ned when the relative resolvent
R.�IA/ � R.�IA0/ is of trace class and some conditions on the asymptotic expan-
sions of the trace of the relative resolvent r.�IA;A0/ are satis�ed, as in Section 2
of [70]. These conditions imply that similar conditions on the trace of the relative
heat operator tr.e�tA � e�tA0/ are satis�ed, according to Section 2 of [53]. The con-
ditions in [70] on the asymptotic expansions ensure that the relative zeta function is
regular at s D 0. In the present work we consider a wider class of pairs, and we ad-
mit a more general type of asymptotic expansions, as follows. Let H be a separable
Hilbert space, and let A and A0 be two self-adjoint non-negative linear operators in
H. Suppose that SpA D SpcA, is purely continuous, and assume both 0 and 1 are
accumulation points of SpA.

Then, by a standard argument (see for example the proof of the corresponding
result in [70]), we prove Lemma 2.1 below.
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Let us recall �rst the de�nition of asymptotic expansion. If f .�/ is a complex
valued function, we write

f .�/ �
1X

nD0
an�

n; an 2 C; � ! 0;

if for any N 2 N0 one has

f .�/ �
NX

nD0
an�

n

�N
�! 0 as � ! 0,

and we say that f has the asymptotic expansion
P1
nD0 an�n. Then the following

result holds true.

Lemma 2.1. Let .A; A0/ be a pair of non-negative self-adjoint operators as above

satisfying the following conditions:

(B.1) the operator R.�IA/�R.�IA0/ is of trace class for all � 2 �.A/\ �.A0/;
(B.2) as � ! 1 in �.A/ \ �.A0/, there exists an asymptotic expansion of the form

tr.R.�IA/�R.�IA0// �
1X

jD0

KjX

kD0
aj;k.��/ j̨ logk.��/;

where aj;k 2 C, �1 < � � � < ˛1 < ˛0, j̨ ! �1, for large j ;

(B.3) as � ! 0, there exists an asymptotic expansion of the form

tr.R.�IA/�R.�IA0// �
1X

jD0
bj .��/ˇj ;

where bj 2 C, �1 � ˇ0 < ˇ1 < � � � , and ǰ ! C1, for large j ;

(C) ˛0 < ˇ0.

Then the relative zeta function is de�ned by

�.sIA;A0/ D 1

�.s/

ˆ 1

0

t s�1 tr.e�tA � e�tA0/dt;

when ˛0 C 1 < Re.s/ < ˇ0 C 1, and by analytic continuation elsewhere. Here � is

the classical Gamma function and

tr.e�tA � e�tA0/ D 1

2�i

ˆ

ƒ

e��t tr.R.�IA/�R.�IA0//d�;
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where ƒ is some contour of Hankel type (see, e.g., [30] and [68]). The analytic

extension of �.sIA;A0/ is regular except for possible simple poles at s D ǰ and

possible further poles at s D j̨ .

Note that the poles of the relative zeta function at s D j̨ can be of higher orders,
differently from the case investigated in [70].

Introducing the relative spectral measure, we have the following useful represen-
tation of the relative zeta function.

Lemma 2.2. Let .A; A0/ be a pair of non-negative self-adjoint operators as above

satisfying conditions (B.1)–(B.3) and (C) of Lemma 2.1. Then,

�.sIA;A0/ D
ˆ 1

0

v�2se.vIA;A0/dv;

where the relative spectral measure is de�ned by

e.vIA;A0/ D v

�i
lim
�!0C

.r.v2e2i��i� IA;A0/ � r.v2ei�IA;A0// v � 0; (1)

r.�IA;A0/ D tr.R.�IA/�R.�IA0// � 2 �.A/\ �.A0/: (2)

The integral, the limit and the trace exist.

Proof. Since .A; A0/ satis�es (B.1)–(B.3), we can write

tr.e�tA � e�tA0/ D 1

2�i

ˆ

ƒ

e��t tr.R.�IA/�R.�IA0//d�:

Changing the spectral variable � to k D �
1=2, with the principal value of the

square root, i.e., with 0 < arg k < � , we get

Tr.e�tA � e�tA0/ D 1

�i

ˆ



e�k2t tr.R.k2IA/�R.k2IA0//kdk;

where  is the line k D �ic, for some c > 0. Writing k D vei� , 0 � � < 2� , and
r.�IA;A0/ D tr.R.�IA/� R.�IA0//, a standard computation leads to

Tr.e�tA � e�tA0/ D
ˆ 1

0

e�v2te.vIA;A0/dv;

�.sIA;A0/ D
ˆ 1

0

v�2se.vIA;A0/dv:
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Remark 2.3. The relative spectral measure is discussed in general, e.g., in [53].
It is expressed by (2) in terms of r.�IA;A0/ which is the Laplace transform of
tr.e�tA � e�tA0/, which in turn is simply related to the spectral shift function
(see eq. (0.6) in [53]). The derivative of the latter is essentially the density of states
used, e.g., in [56] in connection with the Casimir effect, and going back to the original
work by M. Š. Birman and M. G. Kreı̆n [9], [44], and [45].

It is clear by construction that the analytic properties of the relative zeta function
are determined by the asymptotic expansions required in conditions (B.1) and (B.2).
More precisely, such conditions imply similar conditions on the expansion of the rela-
tive spectral measure, and hence on the analytic structure of the relative zeta function.
This is in the next lemmas.

Lemma 2.4. As in Lemma 2.2, let .A; A0/ be a pair of non-negative self-adjoint
operators . Then the relative spectral measure e.vIA;A0/ has the following asymp-
totic expansions. For small v � 0,

e.vIA;A0/ �
1X

jD0
cj v

2ˇj C1;

where

cj D �2bj sin� ǰ

�
;

and the ǰ and the bj are the numbers appearing in condition (B3) of Lemma 2.1;
for large v � 0 and j 2 N0,

e.vIA;A0/ �
1X

jD0

HjX

hD0
ej;hv

2 j̨ C1 logh v

�
1X

jD0

KjX

kD0

kX

hD0
ej;k;hv

2 j̨ C1 logh v2;

where

ej;k;h D �aj;k.�i/k�h�1
�
k

h

�
.ei j̨� � .�1/k�he�i j̨�/

and the aj;k , j̨ , andKj are the numbers appearing in condition (B2) of Lemma 2.1.
The coef�cients ej;h can be expressed in terms of the coef�cients ej;k;h.

Proof. Note that the cut .0;1/ in the complex �-plane corresponds to the cut .�1; 0/

in the complex ��-plane. Thus �� D xei� , with ��� < � , and � D 0 corresponds
to positive real values of ��.
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Thus, inserting the expansion (B3) for small � in the de�nition of the relative
spectral measure, equation (1), we obtain, for small v,

e.vIA;A0/ � � v

i�
lim
�!0C

1X

jD0
bj v

2ˇj .e.�i�i�/ˇj � e.��iCi�/ˇj /;

and the �rst part of the statement follows. For the expansion for large v, we insert (B2)
into the de�nition of the relative spectral measure. This gives, for large v,

e.vIA;A0/ � � v

i�
lim
�!0C

1X

jD0

KjX

kD0
aj;kv

2 j̨ .e.�i�i�/ j̨ .log v2 C �i � i�/k

� e.��iCi�/ j̨ .log v2 � �i C i�/k/;

e.vIA;A0/ � �
1X

jD0
v2 j̨ C1

KjX

kD0

aj;k

i�

�
e�i j̨

kX

hD0

�
k

h

�
.i�/k�h logk v2

� e��i j̨

kX

hD0

�
k

h

�
.�i�/k�h logk v2

�
;

and the thesis follows.

Remark 2.5. We give more details on the �rst coef�cients that are more relevant in
the present work. Direct calculation gives

ej;0 D ej;0;0 C 2

KjX

kD1
ej;k;0 D �

KjX

kD0
aj;k.�i/

k�1.ei j̨� � .�1/ke�i j̨�/;

ej;0;0 D �2 sin� j̨

�
aj;0:

2.2 Relative partition function

Let W be a smooth Riemannian manifold of dimension n, and consider the product
X D S1

=̌2�
�W , where S1r is the circle of radius r , ˇ > 0. Let � be a complex line

bundle overX , andL a self-adjoint non-negative linear operator on the Hilbert space
H.W / of the L2 sections of the restriction of � onto W , with respect to some �xed
metric g on W . Let L be the self-adjoint non-negative operator L D �@2u C A, on
the Hilbert space H.X/ of the L2 sections of �, with respect to the product metric
du2˚g onX , and with periodic boundary conditions on the circle. Assume that there
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exists a second operator A0 de�ned on H.W /, such that the pair .A; A0/ satis�es
the assumptions (B.1)–(B.3) of Lemma 2.1. Then, by a proof similar to the one of
Lemma 2.1 of [70], it is possible to show that there exists a second operator L0
de�ned in H.X/, such that the pair .L; L0/ satis�es those assumptions too. Under
these requirements, we de�ne the regularized relative zeta partition function of the
model described by the pair of operators .L; L0/ by

logZR D 1

2
Res0sD0 �0.sIL;L0/ � 1

2
Res0sD0 �.sIL;L0/ log `2; (3)

where ` is some renormalization constant (introduced by Hawking [41], see also,
e.g., [51], in connection with the scaling behavior in path integrals in curved spaces),
and we have the following result, in which logZR is essentially expressed in terms
of the relative Dedekind eta function �.ˇIA;A0/.

Proposition 2.6. Let A be a non-negative self-adjoint operator on W and suppose

L D �@2uCA, on S1
=̌.2�/

�W as de�ned above. Assume there exists an operator A0
such that the pair .A; A0/ satis�es conditions (B.1)–(B.3) of Lemma 2.1. Then, the
relative zeta function �.sIL;L0/ (de�ned analogously to the one given in Lemma 2.1)
has a simple pole at s D 0 with residua

Res1sD0 �.sIL;L0/ D �ˇ Res2sD�1=2 �.sIA;A0/;
Res0sD0 �.sIL;L0/ D �ˇ Res1sD�1=2 �.sIA;A0/

� 2ˇ.1� log 2/Res2sD�1=2 �.sIA;A0/;
Res0sD0 �0.sIL;L0/ D �ˇ Res0sD�1=2 �.sIA;A0/

� 2ˇ.1� log 2/Res1sD�1=2 �.sIA;A0/

� ˇ
�
2C �2

6
C 2.1� log 2/2

�
Res2sD�1=2 �.sIA;A0/

� 2 log �.ˇIA;A0/;

where L0 D �@2u C A0, and the relative Dedekind eta function is de�ned by

log �.� IA;A0/ D
ˆ 1

0

log.1 � e��v/e.vIA;A0/dv; � > 0:

ResksDs0 �.s/ is understood as the coef�cient of the term .s � s0/
�k in the Laurent

expansion of �.s/ around s D s0.

The residua and the integral are �nite.
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Proof. Since .A; A0/ satis�es (B.1)–(B.3), we deduce that the .L; L0/ relative zeta
function �.sIL;L0/ is de�ned by

�.sIL;L0/ D 1

�.s/

ˆ 1

0

t s�1 Tr.e�tL � e�tL0/dt;

when ˛0 C 1 < Re.s/ < ˇ0 C 1 (with ˛0 and ˇ0 as in Lemma 2.1). Since (see for
example Lemma 2.2 of [70])

Tr.e�Lt � e�L0t / D
X

n2Z
e�.n2=r2/t Tr.e�tA � e�tA0/;

where r D ˇ=.2�/ and t > 0. Using the Jacobi summation formula and dominated
convergence to exchange summation and integration we obtain

�.sIL;L0/ D 1

�.s/

ˆ 1

0

t s�1
X

n2Z
e�.n2=r2/t Tr.e�tA � e�tA0/dt

D
p
�r

�.s/

ˆ 1

0

t s�.1=2/�1 Tr.e�tA � e�tA0/dt

C 2
p
�r

�.s/

ˆ 1

0

t s�.1=2/�1
1X

nD1
e��2r2n2=t Tr.e�tA � e�tA0/dt

Dz1.s/C z2.s/;

with

z1.s/ WD
p
�r

�.s/
�
�
s � 1

2

�
�
�
s � 1

2
IA;A0

�
;

z2.s/ WD2
p
�r

�.s/

1X

nD1

ˆ 1

0

t s�.1=2/�1e��2r2n2=t Tr.e�tA � e�tA0/dt:

The �rst term, z1.s/, can be expanded near s D 0, and this gives the result stated,
by Lemma 2.1. By Lemma 2.2, the second term z2.s/ is

z2.s/ D2
p
�r

�.s/

1X

nD1

ˆ 1

0

t s�1=2�1e��2n2r2=t

ˆ 1

0

e�v2te.vIA;A0/dvdt;
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and we can do the t integral using for example (3.471.9) of [39]. We obtain

z2.s/ D4
p
�r

�.s/

1X

nD1

ˆ 1

0

��nr
v

�s�1=2

Ks�1=2.2�nrv/e.vIA;A0/dv: (4)

Since the Bessel function Ks�1=2.2�nrv/ is analytic in its parameter, regular at
�1=2, and

K�1=2.z/ D
r
�

2z
e�z;

equation (4) gives the formula for the analytic extension of the relative zeta function
�.sIH;H0/ near s D 0. We obtain

z2.0/ D 0; z0
2.0/ D �2

ˆ 1

0

log.1 � e�2�rv/e.vIL;L0/dv;

and the integral converges by assumptions (B.2) and (B.3).

It is clear by the previous result that all information on the relative partition
function comes from the analytic structure of the spatial relative spectral function
�.sIA;A0/ near s D �1=2. Such information is based on the asymptotic expansion
assumed for the relative resolvent, and contained in the following lemma.

Lemma 2.7. As in Lemma 2.2, let .A; A0/ be a pair of non-negative self-adjoint
operators. Then, the relative zeta function �.sIA;A0/ extends analytically to the
following meromorphic function in a neighborhood of s D �1=2:

�.sIA;A0/ D 1

2

J0�1X

jD0

cj

ǰ C 1� s C
J1�1X

jD0

HjX

hD0

.�1/hC1ej;h
2hC1. j̨ C 1� s/hC1

C
ˆ 1

0

v�2s
�
e.sIA;A0/ �

J0X

jD0
cj v

2ˇj C1
�
dv

C
ˆ 1

1

v�2s
�
e.sIA;A0/ �

J1X

jD0

HjX

hD0
ej;hv

2 j̨ C1 logh v
�
dv;

(5)

where J0 is the smallest integer such that ˇJ0
> �3=2, and J1 is the largest integer

such that ˛J1 < �3=2 (the j̨ and ǰ , resp. the cj , ej;h, andHj , are as in Lemma 2.1,
resp. Lemma 2.2).
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Proof. Set

�0.sIA;A0/ D
ˆ 1

0

v�2se.vIA;A0/dv
and

�1.sIA;A0/ D
ˆ 1

1

v�2se.vIA;A0/dv;
then

�.sIA;A0/ D �0.sIA;A0/C �1.sIA;A0/:
Consider the expansion of e.sIA;A0/ for small v given in Lemma 2.4. Let J0 be

the smallest integer such that ˇJ0
> �3=2, and write

�0.sIA;A0/ D
ˆ 1

0

v�2s
� J0X

jD0
cj v

2ˇj C1
�
dv

C
ˆ 1

0

v�2s
�
e.sIA;A0/ �

J0X

jD0
cj v

2ˇj C1
�
dv:

(6)

The last integral in equation (6) is convergent, while the �rst one can be computed
explicitly. This gives the statement for �0, in the sense that �0 has a representation
like in equation (5). For �1 consider the expansion of e.sIA;A0/ for large v given
in Lemma 2.4. Let J1 be the largest integer such that ˛J1 < �3=2, and write

�1.sIA;A0/ D
ˆ 1

1

v�2s
� J1X

jD0

HjX

hD0
ej;hv

2 j̨ C1 logh v
�
dv

C
ˆ 1

1

v�2s
�
e.sIA;A0/ �

J1X

jD0

HjX

hD0
ej;hv

2 j̨ C1 logh v
�
dv:

(7)

The last integral in equation (7) is convergent, while the �rst one can be computed
explicitly. This gives the statement for �1, in the sense that �1 has a representation
like in equation (5). Putting together the representations of �0 and �1 concludes the
proof.

Corollary 2.8. Let .A; A0/ be a pair of non-negative self-adjoint operators as in

Lemma 2.2. With the notation of that lemma,

Res2sD�1=2 �.sIA;A0/ D ea;1

4
;

Res1sD�1=2 �.sIA;A0/ D ea;0

2
� cb

2
;
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Res0sD�1=2 �.sIA;A0/ D 1

2

J0X

jD0;j 6Db

cj

ǰ C 3
2

C
J1X

jD0;j 6Da

HjX

hD0

.�1/hC1ej;h

2hC1
�
j̨ C 3

2

�hC1

C
ˆ 1

0

v
�
e
�

� 1

2
IA;A0

�
�
J0X

jD0
cj v

2ˇj C1
�
dv

C
ˆ 1

1

v
�
e
�

� 1

2
IA;A0

�
�
J1X

jD0

HjX

hD0
ej;hv

2 j̨ C1 loghv
�
dv;

where in the lower limits of the sums a is the index in the sequence ¹ j̨ º, such that
˛a D �3=2, and b is the index in the sequence ¹ ǰ º, such that ˇb D �3=2, and

Res1sD0 �.sIL;L0/ D �ea;1
4
ˇ;

Res0sD0 �.sIL;L0/ D �1
2
.cb � ea;0 � .1� log 2/ea;1/ˇ;

Res0sD0 �0.sIL;L0/ D �ˇ
�
1

2

J0X

jD0;j 6Db

cj

ǰ C 3

2

C
J1X

jD0;j 6Da

HjX

hD0

.�1/hC1ej;h

2hC1
�
j̨ C 3

2

�hC1

C
ˆ 1

0

v
�
e
�

� 1

2
IA;A0

�
�

J0X

jD0
cj v

2ˇj C1
�
dv

C
ˆ 1

1

v
�
e
�

� 1

2
IA;A0

�

�
J1X

jD0

HjX

hD0
ej;hv

2 j̨ C1 logh v
�
dv

�

� ˇ.1� log 2/.ea;0 � cb/

� ˇ
�1
2

C �2

24
C .1� log 2/2

2

�
ea;1

� 2 log �.ˇIA;A0/:
Proof. This is a simple consequence of Lemma 2.7 and Proposition 2.6.



14 S. Albeverio, C. Cacciapuoti, and M. Sprea�co

3 Coulomb potential plus delta interaction centered at the

origin

3.1 Preliminaries

Recall that we denote by �.A/ the resolvent set of A and by R.�IA/ the resolvent
operator .�I � A/�1, for � 2 �.A/. If R.�IA/ operates in L2.R3/, we denote by
k.�IA/ D k.�IA/.x; y/ the integral kernel of R.�IA/, x; y 2 R3.

Let H0 be the self-adjoint realization of the operator �� C =jxj in L2.R3/,
namely the Laplace operator plus a Coulomb potential centered at the origin in the
three dimensional Euclidean space, with parameter  2 R. The kernel of the resol-
vent ofH0 is, see, e.g., eq. (I.2.1.16) in [4] or [16] and [17],

k.�IH0/.x; y/ D ��.1C =2
p

��/
4�jx � yj f�.x; y/;

where

f�.x; y/ D W�=2
p

��;1=2.
p

�� xC/M 0
�=.2

p
��/;1=2

.
p

�� x�/

�W 0
�=.2

p
��/;1=2

.
p

�� xC/M�=.2
p��/;1=2.

p
�� x�/;

with � 2 �.H0/, Re
p

�� > 0, x˙ D jxj C jyj ˙ jx � yj, and where M�;� and
W�;� are Whittaker functions, see, e.g., [39]. In the next proposition we recall some
results on the spectrum of H0, see, e.g., [4] and [42].

Proposition 3.1. For all  2 R the essential spectrum of H0 is purely absolutely

continuous, moreover

�ess.H0/ D �ac.H0/ D Œ0;C1/:

If  � 0 the point spectrum ofH0 is empty. If  < 0 the point spectrum ofH0 is

�pp.H0/ D
°

� 2

4.nC 1/2

±1
nD0

 < 0 :

Following [4], we introduced a perturbation ofH0, by adding a singular one center
point interaction, also centered at the origin. For all �1 < ˛ � 1 we denote byH˛
the operator formally written as ��C =jxj C ˛ı0. The concrete operator is de�ned
in Theorem 2.1.2 of [4], and the integral kernel of the resolvent ofH˛ is

k.�IH˛/.x; y/ D k.�IH0/.x; y/ � 4�

4�˛ � F

� 

2
p

��
�g.�I x/g.�I y/; (8)



Relative partition function of Coulomb plus delta interaction 15

where � 2 �.H˛/ \ �.H0/, Re
p

�� > 0, x; y 2 R3, with

g.�I x/ WD
�
�
1C 

2
p

��
�

4�jxj W�=.2
p

��/;1=2.2
p

�� jxj/ x ¤ 0;

and

F .z/ WD

8
ˆ̂<
ˆ̂:

 .1C z/ � log.z/ � 1

2z
�  .1/ �  .2/;  > 0;

 .1C z/ � log.�z/ � 1

2z
�  .1/ �  .2/;  < 0:

Here z 2 C and  is the digamma function, i.e.,  .z/ D d=dz log�.z/, see (8.36)
of [39]. We note that the function F .z/ is indeed a function of z and of sgn./ only.

In the following proposition we recall some results on the spectrum of the oper-
ator H˛ , see, e.g., Theorem I.2.1.3 in [4].

Proposition 3.2. Let �1 < ˛ � 1. For all  2 R the essential spectrum of H˛ is

purely absolutely continuous, moreover

�ess.H˛/ D �ac.H˛/ D Œ0;C1/ :

The eigenvalues ofH˛ associated with the s-wave .l D 0/ are given by the solutions

of the equation

4�˛ � F
� 

2
p�E

�
D 0; E < 0; (9)

where we set

F

� 

2
p�E

�ˇ̌
ˇ
D0

D lim
!0

F

� 

2
p�E

�
D �

p
�E:

If  � 0 and ˛ � �Œ .1/C .2/�=.4�/, equation (9) has no solutions, moreover the
point spectrum of H˛ is empty.

If  � 0 and ˛ < �Œ .1/C .2/�=.4�/, equation (9) has precisely one solution,
and the operator H˛ has precisely one negative eigenvalue.

If  < 0 equation (9) has in�nitely many solutions. Correspondingly there are
in�nitely many simple eigenvalues associated with the s-wave .l D 0/, moreover for

l � 1 the eigenvalues ofH˛ are given by the usual Coulomb levels Em D �2=.4m2/,

m 2 N, m � 2.

Because of the results of the previous proposition, we proceed our analysis only
in the case of repulsive Coulomb potential, namely for  � 0.
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3.2 Trace of the relative resolvent

We �rst note that for any � 2 �.H0/\�.H˛/ the difference tr.R.�IH˛/�R.�IH0//
is a rank one operator (see, e.g., [4]), then the trace of the relative resolvent of the
pair .H˛; H0/ is well de�ned by

r.�IH˛; H0/ D tr.R.�IH˛/ �R.�IH0// :
By equation (8) and by the de�nition of g.�; x/ it follows that

r.�IH˛; H0/ D �
�
�
1C 

2
p

��
�2

4�˛ � F
� 

2
p

��
�
ˆ 1

0

W 2
�=.2

p
��/;1=2

.2
p

�� jxj/djxj;

with Re
p

�� > 0.
From (7.625.4) and (9.302.1) of [39] and by using the identities �.1Cz/ D z�.z/

and �.1� z/�.z/ D �=sin.�z/, z 2 CnZ, we get for the integral in the latter equation
the expression

ˆ 1

0

W 2
�=.2

p
��/;1=2

.2
p

�� jxj/djxj

D 1

2
p

��
1

�
�
1C 

2
p

��
�
�
� 

2
p

��
�

1

2�i

ˆ

L

.1� s/s�
s C 

2
p

��
��
s � 1C 

2
p

��
� �2

sin2.�s/
ds;

where L is a path in C from �1 to C1 such that the set ¹1; 2; 3; :::º is on the right
of L and the set

°
0;�1;�2; : : : ; 1� 

2
p

��
;� 

2
p

��
;�1� 

2
p

��
; : : :

±

is on the left of L. We notice that for  > 0 one can choose

L D
°
s D x0 C iy with 1 �  Re

p
��

2j�j < x0 < 1;�1 < y < 1
±
:

This gives

r.�IH˛; H0/ D � 1

4�˛ � F
� 

2
p

��
� 1

2
p

��
I
� 

2
p

��
�
; (10)
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where

I.z/ D z

2�i

ˆ

L

.1 � s/s
.s C z/.s � 1C z/

�2

sin2.�s/
ds; (11)

and we used again the identity �.1 C z/ D z�.z/, z 2 C. In order to analyze the
function I.z/ appearing in the formula for the relative trace of the resolvent we need
the formulas in the following lemma.

Lemma 3.3. Let L be the path

L D ¹z D x0 C iyj 1 � a < x0 < 1 ; �1 < y < 1º;
with Re.a/ > 0, then

1

2�i

ˆ

L

�2

sin2 �z
dz D 1;

and
1

2�i

ˆ

L

1

z C a

�2

sin2 �z
dz D  0.a/ � 1

a2
:

Proof. For the �rst, we just integrate

1

2�i

ˆ

L

�2

sin2 �z
dz D � 1

2i
Œcot.�z/�x0Ciy

x0�iy

D lim
y!1 �1

2

�eix0�y C e�ix0Cy

eix0�y � e�ix0Cy � eix0Cy C e�ix0�iy

eix0Cy � e�ix0�y
�

D 1:

For the second one, we �rst integrate twice by parts. This gives
ˆ

L

1

aC z

�2

sin2 �z
dz D �2

ˆ

L

log sin�z

.aC z/3
dz:

Next,we use the product representation for the sine function:
ˆ

L

log sin�z

.a C z/3
dz D

ˆ

L

log�z

.aC z/3
dz C

ˆ

L

1

.aC z/3

1X

kD1
log

�
1 � z2

k2

�
dz:

The �rst term gives no contribution, for
ˆ

L

log�z

.aC z/3
dz D �1

2

h log�z

.aC x0 C iy/2

iyDC1
yD�1

C 1

2

ˆ

L

1

z.aC z/2
dz

D 0C 1

2

h 1

a.aC z/
� 1

a2
log

�
1C a

z

�iyDC1
yD�1

D 0:



18 S. Albeverio, C. Cacciapuoti, and M. Sprea�co

In the second term, due to uniform convergence, we can twist the sum with the
integration. We have

ˆ

L

1

.aC z/3
log

�
1 � z2

k2

�
dz D 0�

ˆ

L

z

.aC z/2
1

k2 � z2 dz:

Assuming Re.a/ > 0, we can deform the pathL to a contour of Hankel type: starting
at in�nity on the upper side of the real axis, turning around the point z D k and
going back to in�nity below the real axis. Since the integrand vanishes as z�3 for
large Re.z/, we can further deform the path of integration to a circle around the point
z D k. This gives

ˆ

L

z

.aC z/2
1

k2 � z2
dz D � �i

.aC k/2
;

and hence the second formula of the lemma follows recalling the de�nition of the
digamma function  .z/, see (8.36) of [39].

Now we can use the result of the latter lemma to give an explicit expression for
the function I.z/.

Lemma 3.4. Let I.z/ be the function de�ned in equation (11), then

I.z/ D 1 � 2z C 2 0.1C z/z2 :

Proof. We observe that

.1� s/s

.s C z/.s � 1C z/
D �1C z.1C z/

s C z
C z.1 � z/
s � 1C z

;

from which it follows that

z

2�i

ˆ

L

.1 � s/s
.s C z/.s � 1C z/

�2

sin2 �s
ds D � z

2�i

ˆ

L

�2

sin2 �s
ds

C z2.1C z/

2�i

ˆ

L

1

s C z

�2

sin2 �s
ds

C z2.1 � z/
2�i

ˆ

L

1

s � 1C z

�2

sin2 �s
ds:

Using Lemma 3.3, and recalling that  .z C 1/ D  .z/C 1=z, after some calcu-
lation we have the stated formula.
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Proposition 3.5. For any � 2 �.H˛/ \ �.H0/, the trace of the relative resolvent of

the pair of operators .H˛; H0/ is given by

r.�IH˛; H0/

D � zI.z/

.4�˛ � F .z//

ˇ̌
ˇ̌
zD=.2

p
��/

D � z.2 0.1C z/z2 � 2z C 1/


�
4�˛ � . .1C z/ � log z � 1

2z
�  .1/ �  .2//

�

ˇ̌
ˇ̌
ˇ̌
ˇ
zD=.2

p
��/

;

(12)

with Re
p

�� > 0. Moreover the following asymptotic expansion holds true for

small �,

r.�IH˛; H0/ D
1X

kD0
bk.��/k; (13)

with bk 2 R. The �rst coef�cients are given by

b0 D � 1

3. � 2C C 4�˛/
; b1 D .17� 24C / C 48�˛

453.2C �  � 4�˛/2 :

For large �, we have the following asymptotic expansion

r.�IH˛; H0/ D
1X

jD2;kD0
aj;k.��/�

j
2 logk.��/; (14)

with aj;k 2 R. The �rst coef�cients are given by

a2;0 D �1
2
; a2;k>0 D 0;

a3;0 D 4�˛ C .2� C/ C .log  � log 2/

2
; a3;1 D �

4
; a3;k>1 D 0:

Proof. Formula (12) follows directly from the equation (10) and from Lemma 3.4.
The asymptotic expansions of the relative trace follow easily from classical expansion
of the poly Gamma function. Recalling the expansions of the digamma function
(see for example (8.344) of [39]) for large jzj, z 2 C,

 .1C z/ D log z C 1

2

1

z
�

1X

kD1

B2k

2k

1

z2k
;
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B2k being Bernoulli numbers, and for small z 2 C (see for example (8.342) of [39]):

 .1C z/ D �C C
1X

kD2
.�1/k�.k/zk�1;

where C is the Euler constant, and where � denotes the Riemann’s zeta function.
Since z D =.2

p��/ one obtains the expansions (13) and (14).

4 The relative partition function of the Coulomb plus delta

interaction

In this section we study the relative zeta function and the relative partition function
of the model described in Section 3.

It is clear, by the result in Proposition 3.5, that the conditions (B.1), (B.2) and
(B.3) of Lemma 2.1, necessary to de�ne the relative zeta function are satis�ed. Also,
by the same proposition, the minimum value for the index j is j D 2, corresponding
to ˛2 D �1, then the �rst terms in the expansion of the relative spectral measure,
according to Lemma 2.4, are: �rst, the term corresponding to ˛2 D �1, that gives
only a term in 1=v, sinceK2 D 0; second, the terms corresponding to ˛3 D �3=2, that
gives a term in 1=v2 and a term in 1=v2 log v2, sinceK3 D 1. Applying the formula in
Lemma 2.4, the coef�cients are

e2;0;0 D 0I

e3;0;0 D
4�˛ C .2� C/ C  log



2
�

; e3;1;0 D 0; e3;1;1 D � 

2�
:

Whence, we have the following expansion of the relative spectral measure:

e.vIH˛; H0/ D O.vk/; k > 0 (15)

for v ! 0C,

e.vIH˛; H0/ D � 
�

1

v2
log v C

4�˛ C .2� C/ C  log


2
�

1

v2
CO.v�3 log v/

(16)
for v ! C1, and

e3;0 D
4�˛ C .2 � C/ C  log



2
�

; e3;1 D � 
�
:

All the coef�cients ej;h with smaller indices vanish.
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We are now in the position of analyzing the relative zeta function �.sIH˛; H0/.
In fact, what we are interested in is the expansion near s D �1=2.

Proposition 4.1. The relative zeta function �.sIH˛; H0/ has an analytic expansion
to a meromorphic function analytic in the strip 0 � Re.s/ � 1, up to a double pole

at s D �1=2. Near s D �1=2, the following expansion holds:

�.sIH˛; H0/ D
e3;1

4�
s C 1

2

�2 C
e3;0

2

s C 1

2

C
ˆ 1

0

ve.vIH˛; H0/dv

C
ˆ 1

1

v
�
e.vIH˛; H0/ � e2;1

v2
log v � e2;0

v2

�
dv CO

�
s C 1

2

�
;

where

e3;1 D � 
�
;

e3;0 D
8�˛ � 2C C 4 C  log

2

4
2�

:

Proof. By the expansions in equations (15) and (16) for the relative spectral measure,
we see that the indices J0 and J1 de�ned in Lemma 2.7 are respectively: J0 D 0 and
J1 D 4. Hence, by the same lemma, there are no poles arising from the expansion of
the spectral measure for small v, and since the minimum value for the index j of j̨

is j D 2, there are three terms arising from the expansion for large v. The �rst term
is with j D 2, and vanishes since e2;0 D 0. The other two terms are with j D 3,
and k D 0 and k D H3 D 1. Applying the formula in Lemma 2.7 we compute these
terms.

Corollary 4.2. The relative zeta function of the pair of operators (L D �@2u CH˛,

L0 D �@2u CH0) on S1=̌.2�/
� R3 has a simple pole at s D 0 with residua

Res1sD0 �.sIL;L0/ D 

4�
ˇ;

Res0sD0 �.sIL;L0/ D �
8�˛ � 2C C 4 C  log

2

4
4�

ˇ C .1 � log 2/

2�
ˇ;
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Res0sD0 �0.sIL;L0/ D �
�
ˆ 1

0

ve.vIH˛; H0/dv

C
ˆ 1

1

v
�
e.vIH˛; H0/ � e3;1

v2
log v � e3;0

v2

�
dv

�
ˇ

�
.1 � log 2/

�
8�˛ � 2C C 4 C  log

2

4

�

2�
ˇ

C
�
2C �2

6
C 2.1� log 2/2

� 
4�
ˇ

� 2
ˆ 1

0

log.1� e�ˇv/e.vIH˛; H0/dv:

Proof. This is a simple consequence of Proposition 4.1 and Corollary 2.8.

Using the formula in equation (3), we obtain the following result for the relative
partition function, where ` is some renormalization constant,

logZR D �1
2

�
ˆ 1

0

ve.vIH˛; H0/dv

C
ˆ 1

1

v.e.vIH˛; H0/ � e3;1

v2
log v � e3;0

v2
/dv

�
ˇ

�
.1� log 2/

�
8�˛ � 2C C 4 C  log

2

4

�

4�
ˇ

C
�
2C �2

6
C 2.1� log 2/2

� 
8�
ˇ

�
ˆ 1

0

log.1� e�ˇv/e.vIH˛; H0/dv

C
�
4�˛ � C C 2 C  log



2
� 1C  log 2

� ˇ
2�

log `:
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Inequivalence of quantum Dirac �elds

of different masses

and the underlying general structures involved

Asao Arai

Dedicated to Professor Pavel Exner on the occasion of his 70th birthday

1 Introduction

In a previous paper [2], the author showed that there exists a general mathematical
structure behind the fact (Theorem X.46 in [6]) that the time-zero Hermitian scalar
�elds of different masses as representations of the canonical commutation relations
(CCR) over L2

R
.R3/ (the real Hilbert space of square integrable functions on R3)

are mutually inequivalent, an interesting fact which may allow one to view the boson
masses as objects distinguishing elements in a family of inequivalent representations
of the CCR over L2

R
.R3/, giving a representation theoretic meaning to the boson

masses. A point in [2] lies in understanding that the family of time-zero Hermitian
scalar �elds, which is indexed by themass parameter, is a special example of a general
class of representations of the CCR over an abstract Hilbert space indexed by a set
of (unbounded) self-adjoint operators and the inequivalence of the time-zero scalar
�elds of different masses can be derived as a simple application of a theorem on
inequivalence of the representations under consideration in the abstract framework.
Based on this structure, a new class of representations of the CCR overL2

R
.Rd / with

d 2 N arbitrary, including as a special case the time-zero Hermitian scalar �elds
mentioned above, was found [2].

As a next step of research, it is natural to ask if there exist similar structures in
the case of Fermi �elds, typically quantum Dirac �elds. In this paper, we show that
the answer to the question is in the af�rmative.

In Section 2, we introduce a family of irreducible representations of the canonical
anticommutation relations (CAR) over an abstract Hilbert spaceH, where their rep-
resentation space is taken to be the fermion Fock space overH. To the author’s best
knowledge, this family of representations of CAR may be new. We prove a theorem
on inequivalence of these representations. In Section 3, we construct a free quantum
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Dirac �eld in the .1 C d/-dimensional space-time on the fermion Fock space over
L2.Rd�IC�/, the Hilbert space of C�-valued square integrable functions on Rd�
(the d -dimensional wave vector space or the d -dimensional momentum space1),
where � is de�ned by (13) below. As an application of the inequivalence theorem
in Section 2, we prove that the free quantum Dirac �elds of different masses as well
as interacting ones are inequivalent. In Section 4, we construct a general class of
inequivalent representations of the CAR over L2.Rd�IC�/, which is a generaliza-
tion of time-zero quantum Dirac �elds. In the last section, we consider quantum
Dirac �elds on a d -dimensional boxM for comparison with those on Rd . We prove
that the quantum Dirac �elds onM of different positive masses are equivalent if and
only if d D 1.

2 A family of irreducible representations of the CAR over

a Hilbert space

The inner product and the norm of a Hilbert spaceH are denoted by h�; �iH (antilinear
in the left variable) and k � kH respectively. But we sometimes omit the subscript H
in h�; �iH and k � kH if there is no danger of confusion. For a linear operator A on a
Hilbert space, we denote its domain byD.A/. IfA is densely de�ned, then we denote
its adjoint by A�.

We �rst recall the concept of representation of CAR.

De�nition 2.1. Let F andH be complex Hilbert spaces, and

A.H/ WD ¹ .f /;  .f /� j f 2 Hº

be a subset ofB.F/, the Banach space of everywhere de�ned bounded linear opera-
tors on F.

1. The pair .F;A.H// is called a representation of the CAR overH if the following
conditions (a) and (b) hold.

(a) Antilineality. For all f; g 2 H and ˛; ˇ 2 C,

 . f̨ C ˇg/ D ˛� .f /C ˇ� .g/:

1We use the physical unit system where „ (the Planck constant divided by 2�) and the light speed c
are equal to 1.
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(b) CAR. For all f; g 2 H,

¹ .f /;  .g/º D 0; ¹ .f /;  .g/�º D hf; gi;
where ¹X; Y º WD XY C YX .

2. The representation .F;A.H// is irreducible if there exist no proper subspaces
of F which remain invariant under the action of all operators  .f / and  .f /�
(f 2 H) in A.H/.

3. Let .F0;A0.H//, with A0.H/ WD ¹ 0.f /;  0.f /� j f 2 Hº/, be another rep-
resentation of the CAR overH. Then the two representations .F0;A0.H// and
.F;A.H// are equivalent if there exists a unitary operatorUWF ! F0 such that,
for all f 2 H,  0.f / D U .f /U�.

Remark 2.2. Taking the adjoint of the �rst equation in (b) in De�nition 2.1(1),
we have ¹ .f /�;  .g/�º D 0, f; g 2 H.

As is well known, representations of the CAR over a Hilbert space can be con-
structed on fermion Fock spaces (see, e.g., Chapter 5 of [1], §5.2 of [3], [4], and [8]).
For the reader’s convenience, we �rst review elementary aspects of fermion Fock
spaces.

LetH be a complex Hilbert space. Then the fermion Fock space F.H/ overH is
de�ned as the in�nite direct sum Hilbert space

F.H/ WD
1M

nD0

n̂

H

of the n-fold antisymmetric tensor product Hilbert space
Vn

H ofHwith conventionV0
H WD C .
For each f 2 H, the creation operator A�.f / with test vector f acting in F.H/

is de�ned by

D.A�.f // WD
°
‰ D ¹‰.n/º1

nD0 2 F.H/
ˇ̌
ˇ

1X

nD1
nkAn.f ˝‰.n�1//k2 < 1

±
;

.A�.f /‰/.0/ WD 0; .A�.f /‰/.n/ WD p
nAn.f ˝‰.n�1//;

for n � 1 and ‰ 2 D.A�.f //, where An denotes the antisymmetrization operator
on the n-fold tensor product Hilbert space

Nn
H of H. Since D.A�.f // includes

the �nite particle subspace

F0 WD ¹‰ 2 F.H/ j there exists n0 such that, for all n � n0, ‰
.n/ D 0º;
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which is dense in F.H/, it follows thatD.A�.f // is dense inF.H/. Hence the adjoint

A.f / WD .A�.f //�

of A�.f / exists and is called the annihilation operator with test vector f . It follows
that A.f /� D A�.f /. We denote by A.f /# either A.f / or A.f /�.

It is proved (see, e.g., Chapter 5 of [1] and §5.2 of [3]) that D.A.f /#/ D F.H/

and A.f /# is bounded satisfying the following anticommutation relations

¹A.f /; A.g/º D 0; ¹A.f /; A.g/�º D hf; gi; f; g 2 H: (1)

The correspondence H 3 f 7! A.f / (resp. A.f /�) is complex antilinear (resp.
linear). Thus .F.H/; ¹A.f /; A.f /� j f 2 Hº/ is a representation of the CAR over
H, which is called the Fock representation of the CAR overH. It is well known that
it is irreducible (see, e.g., Theorem 10.2 in [8]).

We now �x an orthogonal decomposition

H D HC ˚ H�

of H with HC and H� being mutually orthogonal nontrivial closed subspaces
(HC 6D ¹0º;H) and a conjugation C on H (C is an antilinear mapping on H satis-
fying C 2 D I (identity) and kCf k D kf k; f 2 H). We have

hCf; Cgi D hg; f i; f; g 2 H:

We denote byB˙ the Banach space of everywhere de�ned bounded linear oper-
ators from H toH˙ and introduce a subset of the direct product spaceBC � B�:

T.H/ WD ¹T D .TC; T�/ j T˙ 2 B˙; T �
CTC C xT �

� xT� D I º;
where

xT� WD CT�C:

It is easy to see that xT� is a bounded linear operator on H with operator norm
k xT�k D kT�k.

Each T 2 T.H/ de�nes an element ofB.H/ by

Tf WD .TCf; T�f /; f 2 H:

For each T 2 T.H/, we de�ne an antilinear mapping  T WH ! B.F/ by

 T .f / WD A.TCf; 0/C A.0; T�Cf /�; f 2 H:

It is obvious that
 T .f /

� D A.TCf; 0/� C A.0; T�Cf /:
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Let

AT .H/ WD ¹ T .f /;  �
T .f / j f 2 Hº:

Lemma 2.3. For all f; g 2 H, the following anticommutation relations hold:

¹ T .f /;  T .g/º D ¹ T .f /�;  T .g/�º D 0; (2)

¹ T .f /;  T .g/�º D hf; gi: (3)

Proof. By direct computations using (1), we have

¹ T .f /;  T .g/�º D hTCf; TCgi C h xT�f; xT�gi:

Since T �CTC C xT �� xT� D I , we obtain (3). Similarly one can prove (2).

Lemma 2.3 shows that .F.H/;AT .H// is a representation of the CAR overH.

Remark 2.4. The standard choice of T D .TC; T�/ in the literature is given by
TC D P and T� D C.I � P /C , where P is the orthogonal projection onto HC
(see, e.g., pp. 22–23 of [4] and §10.1.3 in [8]). In this case, the representation is
called a quasi-free representation. Hence the representation .F.H/;AT .H// gives a
generalization of of the quasi-free representation.

To �nd more detailed properties of the representation .F.H/;AT .H//, we intro-
duce the following additional conditions (T.1)–(T.3) for T D .TC; T�/ 2 T.H/:

(T.1) TCT �C D I ;

(T.2) T�T �� D I ;

(T.3) T� xT �C D 0.

We de�ne a subset of T.H/:

T�.H/ WD ¹T 2 T.H/ j (T.1)–(T.3) holdº:

Lemma 2.5. Let T 2 T�.H/. Then

A.f / D  T .T
�
CfC/C  T .CT

�
�f�/

�; f D .fC; f�/; f˙ 2 H˙: (4)
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Proof. By (T.1) and (T.3), we have

 T .T
�
CfC/ D A.fC; 0/; fC 2 HC:

Property (T.3) implies that
xTCT

�
� D 0:

By this fact and (T.2), we obtain

 T .CT
�
�f�/ D A.0; f�/�; f� 2 H�:

We have
A.f / D A.fC; 0/C A.0; f�/:

Thus we obtain (4).

Lemma 2.6. For all T 2 T�.H/, .F.H/;AT .H// is irreducible.

Proof. Let D be a closed subspace which is invariant under the action of all  T .f /
and  T .f /� (f 2 H). Let Q be the orthogonal projection onto D. Then it follows
that, for all f 2 H, Q T .f /# D  T .f /

#Q. Hence, by (4), QA.f /# D A.f /#Q

for all f 2 H. It is well known (or easy to see) that ¹A.f /; A.f /� j f 2 Hº
is irreducible. Hence Q D ˛I for some ˛ 2 C. But, since Q is an orthogonal
projection, it follows that ˛ D 0 or ˛ D 1. This means that D D ¹0º or D D F.H/.
Thus AT .H/ is irreducible.

Lemmas 2.3 and 2.6 immediately yield the following theorem.

Theorem 2.7. For each T 2 T�.H/, .F.H/;AT .H// is an irreducible representa-
tion of the CAR overH.

Thus we have a family ¹.F.H/;AT .H/ºT2T�.H/ of irreducible representations
of the CAR overH.

We next consider equivalence or inequivalence of two representations .F.H/,
AT .H// and .F.H/;AS.H// with S 6D T (S; T 2 T�.H/).

For each pair .S; T / 2 T�.H/� T�.H/, we de�ne linear operators V andW on
H as follows:

Vf WD .SCT
�
CfC; S�T

�
�f�/;

Wf WD .SC xT �
�f�; S� xT �

CfC/;

for f D .fC; f�/ 2 H.
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Lemma 2.8. The following equations hold:

V �V C SW � SW D I; (5)

V V � CWW � D I; (6)

xV � SW CW �V D 0; (7)

xV W � C SW V � D 0: (8)

Proof. The operators V and W have the operator matrix representations

V D
�
SCT �C 0

0 S�T ��

�
;

W D
�

0 SC xT ��
S� xT �C 0

�
:

Using these representations and properties of S and T , one can easily prove (5)–(8)
by direct computations.

We de�ne
B.f / WD A.Vf /C A.WCf /�; f 2 H:

Then it is easy to see that ¹B.f /; B.f /� j f 2 Hº is a representation of the CAR
overH.

Lemma 2.9. There exists a unitary operator U on F.H/ such that

A.f / D UB.f /U�; f 2 H; (9)

if and only if W is Hilbert–Schmidt.

Proof. Since we have (5)–(8), the lemma follows from the general theory of Bogoli-
ubov transformations on F.H/ (see, e.g., §10.3 of [8]).

Theorem 2.10. Let T and S be in T�.H/ with T 6D S . Then the two representations
.F.H/, AT .H// and .F.H/;AS.H// are equivalent if and only if SC xT �� and S� xT �C
are Hilbert–Schmidt.

Proof. Suppose that .F.H/;AT .H// and .F.H/;AS.H// are equivalent. Then there
exists a unitary operator U on F.H/ such that

U S .f /U
� D  T .f /; f 2 H: (10)
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Then, by (T.1)–(T.3), we have

A.fC; 0/ D U.A.SCT
�
CfC; 0/C A.0; S�CT

�
CfC/

�/U�; fC 2 HC (11)

and

A.0; f�/� D U.A.SCCT
�
�f�; 0/C A.0; S�T

�
�f�/

�/U�; f� 2 H�: (12)

Hence, adding the �rst equation to the adjoint of the second one, we obtain (9). There-
fore, by Lemma 2.9, W is Hilbert–Schmidt, which is equivalent to that SC xT �� and
S� xT �C are Hilbert–Schmidt.

Conversely, suppose that SC xT �� and S� xT �C are Hilbert–Schmidt. Then W is
Hilbert–Schmidt. Hence, by Lemma 2.9, there exists a unitary operator U on F.H/

such that (9) holds. Then both (11) and (12) hold. Using T �CTC C xT �� xT� D I ,
we obtain (10).

The contraposition of Theorem 2.10 gives an inequivalence theorem on the two
representations .F.H/, AT .H// and .F.H/, AS .H//:

Theorem 2.11. Let T and S be in T�.H/ with T 6D S . Then the two representations
.F.H/, AT .H// and .F.H/;AS.H// are inequivalent if and only if SC xT �� or S� xT �C
is not Hilbert–Schmidt.

3 Inequivalence of quantum Dirac �elds of different

masses

In this section, we consider a free quantum Dirac �eld on the .1 C d/-dimensional
space-time and an interacting one as well. We take the space dimension d 2 N to
be arbitrary, because we want to see the dependence or independence of properties
of the Dirac �eld on d . The main purpose of this section is to show by applying
Theorem 2.11 that the time-zero quantum Dirac �elds of different masses, which are
representations of the CAR over a Hilbert space, are mutually inequivalent. This
implies that the time-t quantum Dirac �elds of different masses (t 2 R) also are
mutually inequivalent.
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3.1 The d-dimensional free Dirac operator

For each d 2 N, we de�ne � 2 N as follows:

� WD
´
2

.dC1/=2 if d is odd,

2d if d is even.
(13)

It is well known that there exist � � � Hermitian matrices ¹ j̨ ºdjD1and ˇ satisfy-
ing the following anticommutation relations (a representation of the Clifford algebra
associated with the Euclidean vector space R1Cd ):

¹ j̨ ; ˛kº D 2ıjkI� ; j; k D 1; : : : ; d; (14)

¹ j̨ ; ˇº D 0; j D 1; : : : ; d; (15)

ˇ2 D I� ; (16)

where ıjk is the Kronecker delta and In (n 2 N) is the n � n identity matrix.
The free Dirac equation with massm � 0 in the .1C d/-dimensional space-time

R1Cd WD ¹.t; x/ j t 2 R; x D .x1; : : : ; xd / 2 Rd º is of the form:

i
@ .t; x/

@t
D Hm .t; x/; (17)

where  WR1Cd ! C� (or a � component distribution on R1Cd ), i is the imaginary
unit and

Hm WD
dX

jD1
j̨pj Cmˇ

with pj WD �iDj (Dj is the generalized partial differential operator in the vari-
able xj ).

We use the symbol

R
d� D ¹k D .k1; : : : ; kd / j kj 2 R; j D 1; : : : ; dº

for the dual space of Rd (the space of d -dimensional wave vectors) and denote by
Fd WL2.Rd / ! L2.Rd�/ the d -dimensional Fourier transform:

.Fdf /.k/ WD 1

.2�/d=2

ˆ

Rd

f .x/e�ikx dx; f 2 L2.Rd /; k 2 R
d�;

in the L2-sense, where kx WD Pd
jD1 kjxj .
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In what follows, we treat Hm as an operator acting in

HD WD L2.Rd IC�/ D ¹f D .fr/
�
rD1 j fr 2 L2.Rd /; r D 1; : : : ; �º;

the Hilbert space of C�-valued square integrable functions on Rd . We set

yHD WD FdHD D L2.Rd�IC�/:
For each k 2 Rd�, we de�ne a � � � Hermitian matrix hm.k/ by

hm.k/ WD ˛k Cmˇ;

where ˛k WD Pd
jD1 j̨kj , and denote the multiplication operator by the matrix-

valued function hm.�/ on yHD by yHm:

D. yHm/ WD
²
f 2 yHD

ˇ̌
ˇ̌
ˆ

Rd �
khm.k/f .k/k2C� dk < 1

³
;

yHmf .k/ WD hm.k/f .k/; f 2 D. yHm/; a.e. k 2 R
d�:

By the theory of Fourier transform, we have FdpjFd�1D kj (j D 1; : : : ; d ), where
the right hand side denotes the multiplication operator by the variable kj . Hence it
follows that

FdHmFd
�1D yHm: (18)

Using (14), one has
.˛k/2 D k2; k 2 R

d�: (19)

By this fact, (15), and (16), one obtains that

khm.k/f .k/k2C� D .k2 Cm2/kf .k/k2
C� ; k 2 R

d�:

Hence

D. yHm/ D
²
f 2 yHD

ˇ̌
ˇ̌
ˆ

Rd �
k2kf .k/k2

C� dk < 1
³
:

Let
Em.k/ WD

p
k2 Cm2; k 2 R

d�

and

dm.k/ WD mCEm.k/C ˇ˛kp
2Em.k/.mC Em.k//

.the case m > 0/;

d0.k/ WD

8
<̂

:̂

1p
2

�
1C ˇ

˛k

jkj
�

for k 6D 0,

I� for k D 0

.the case m D 0/:
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As in the case d D 3 (see, e.g., §1.4 of [8]), one can show that dm.k/ is unitary
and

dm.k/hm.k/dm.k/
�1 D Em.k/ˇ; k 2 R

d�: (20)

We denote by yDm the multiplication operator by dm.�/. The operator
Um WD yDmFd

is a unitary operator from HD to yHD. By (18) and (20), we have

UmHmU
�1
m D Emˇ: (21)

Namely Hm is unitarily equivalent to Emˇ. It is obvious that Emˇ is self-adjoint.
HenceHm is self-adjoint. Thus, for each  0 2 D.Hm/, the free Dirac equation (17)
with initial condition  .0; �/ D  0 has the unique solution

 .t; �/ D e�itHm 0; t 2 R:

Relation (21) clari�es spectral properties of Hm too. For a linear operator A
on a Hilbert space, we denote by �.A/ (resp. �p.A/) the spectrum (resp. the point
spectrum) of A. By the unitary invariance of spectra, (21) implies that

�.Hm/ D �.Emˇ/; �p.Hm/ D �p.Emˇ/:

It follows from (16) and ˇ 6D ˙I� that �.ˇ/ D �p.ˇ/ D ¹˙1º. Hence
�.Emˇ/ D ¹Em.k/ j k 2 R

d�º [ ¹�Em.k/ j k 2 R
d�º D .�1;�m�[ Œm;1/

and �p.Emˇ/ D ;. Therefore
�.Hm/ D .�1;�m�[ Œm;1/; �p.Hm/ D ;:

3.2 Eigenvectors of hm.k/ and some operators

One can easily show that dim ker.ˇ ˙ 1/ D �=2. Hence, by diagonalization (if nec-
essary), we can assume without loss of generality that

ˇ D
�
I�=2 0

0 �I�=2

�
:

We denote by ¹erº�rD1 the standard basis of C� : er D .ırr 0/�r 0D1. For all k 2 Rd�
and s D 1; : : : ; �=2, we de�ne the following vectors in C�:

um.k; s/ WD dm.k/
�1es 2 C

� ; vm.k; s/ WD dm.k/
�1esC.�=2/ 2 C

�: (22)
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By (20), we have

hm.k/um.k; s/ D Em.k/um.k; s/; hm.k/vm.k; s/ D �Em.k/vm.k; s/:

Namely um.k; s/ (resp. vm.k; s/) is an eigenvector of hm.k/with positive (resp. neg-
ative) energy Em.k/ (resp. �Em.k/). Since dm.k/�1 is unitary, it follows that, for
each k 2 Rd�, the set ¹um.k; s/; vm.k; s/ j s D 1; : : : ; �=2º is a complete orthonor-
mal basis of C� . Hence

hum.k; s/; um.k; s0/iC� D ıss0 ; (23)

hvm.k; s/; vm.k; s0/iC� D ıss0 ;

hum.k; s/; vm.k; s0/iC� D 0; s; s0 D 1; : : : ;
�

2
: (24)

and

�=2X

sD1
.umr .k; s/umr 0.k; s/� C vmr.k; s/vmr 0.k/�/ D ırr 0; r; r 0 D 1; : : : ; �; (25)

where umr .k; s/ (resp. vmr .k; s/) is the r th component of the vector um.k; s/ (resp.
vm.k; s/) and, for a complex number z 2 C, z� denotes the complex conjugate of z.

The Hilbert space yHD has the orthogonal decomposition

yHD D yHDC ˚ yHD� (26)

with
yHD˙ WD L2.Rd�IC�=2/:

We de�ne linear operators Tm˙W yHD ! yHD˙ by

TmCf WD .um.�; s/�f /�=2
sD1 2 yHDC; (27)

Tm�f WD . Qvm.�; s/ Qf /�=2
sD1 2 yHD�; f 2 yHD; (28)

where, for w D .wr/
�
rD1WRd� ! C�,

.wf /.k/ WD
�X

rD1
wr.k/fr .k/; f D .fr /

�
rD1 2 yHD; k 2 R

d�

and
Qw.k/ WD w.�k/; k 2 R

d�:

It follows that Tm˙ are bounded with kTm˙k �
p
�=2.
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It is easy to see that

.T �
mCfC/r D

�=2X

sD1
umr .�; s/fCs; fC D .fCs/

�=2
sD1 2 yHDC; (29)

.T �
m�f�/r D

�=2X

sD1
vmr.�; s/� Qf�s ; f� D .f�s/

�=2
sD1 2 yHD�; r D 1; : : : ; �: (30)

We denote by C the complex conjugation on yHD:

Cf WD .f �
r /
�
rD1:

For a linear operator A on yHD, we de�ne xA by

xA WD CAC:

We regard yHD˙ as subspaces of yHD in the natural way so that C acts also on yHD˙.

Remarkable properties of Tm˙ are summarized in the following lemma:

Lemma 3.1. We have

T �
mCTmC C xT �

m� xTm� D I; (31)

Tm˙T
�
m˙ D I; (32)

TmC xT �
m� D 0; Tm� xT �

mC D 0: (33)

Proof. Throughout the proof, we write T˙ (resp. u.k; s/; v.k; s/) for Tm˙ (resp.
um.k; s/; vm.k; s/). Let f; g 2 yHD. Then

hTCf; TCgi C h xT�f; xT�gi

D
�=2X

sD1

ˆ

Rd

¹.u.�; s/f �/.k/.u.�; s/�g/.k/C .v.�; s/f �/.k/.v.�; s/�g/.k/ºdk

D
�X

r;r 0D1

ˆ

Rd

fr.k/
�gr 0.k/

� �=2X

sD1
.ur .k; s/ur 0.k; s/� C vr.k; s/vr 0.k; s/�/

�
dk

D
�X

rD1

ˆ

Rd

fr .k/
�gr .k/dk;

where we have used (25) to obtain the last equality. Hence

hTCf; TCgi C ˝ xT�f; xT�g
˛ D hf; gi :

This implies (31).
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We have by (29)

hT �
Cf; T

�
Cgi D

�X

rD1

�=2X

s;s0D1
hur .�; s/fs; ur.�; s0/gs0i

D
ˆ

Rd �
hu.k; s/; u.k; s0/ifs.k/�gs0.k/dk

D hf; gi;
where we have used (23). Hence TCT �C D I . Similarly, using (30), one can show
that T�T �� D I . One can see that orthogonality (24) implies (33).

Lemma 3.1 immediately yields the following result.

Lemma 3.2. For all m � 0,

Tm WD .TmC; Tm�/

is an element of T�. yHD/.

It follows from (32) that kT �
m˙k D 1 and hence

kTm˙k D 1: (34)

3.3 A free quantum Dirac �eld

We construct a free quantum Dirac �eld on the fermion Fock space F. yHD/ over yHD.
Note that we work with momentum representation. We denote by a.f / (f 2 yHD)
the annihilation operator on F. yHD/.

For each f 2 yHD, we de�ne

y m.f / WD a.TmCf; 0/C a.0; Tm�f �/�; f 2 yHD;

and set
O�m WD ¹ y m.f /; y m.f /� j f 2 yHDº:

Remark 3.3. A free quantum Dirac �eld on the .1Cd/ (resp. 4)-dimensional space-
time was considered in [5] (resp. [7]). In these papers (also in §10.1 of [8]), the
projection method asmentioned in Remark 2.4 is used. Butwe �nd that the projection
method is somewhat inconvenient to discuss a family of quantumDirac �elds indexed
by mass m, since the orthogonal decomposition of HD in the projection method
depends on m. Thus we take a slightly different approach in which the orthogonal
decomposition (26) is �xed independently of m.
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By Lemma 3.2 and an application of Theorem 2.7, we obtain the following propo-
sition.

Proposition 3.4. For each m � 0, .F. yHD/; O�m/ is an irreducible representation of
the CAR over yHD.

Let
 m.t; f / WD y m.eit yHm Of /; t 2 R; f 2 D.Hm/;

and
�m.t / WD ¹ m.t; f /;  m.t; f /� j f 2 HDº:

Since eit yHm is unitary for all t 2 R, Proposition 3.4 yields the following result.

Proposition 3.5. For each m � 0 and t 2 R, .F. yHD/; �m.t // is an irreducible
representation of the CAR overHD.

The following proposition shows that  m.t; f / is a free quantum Dirac �eld on
the .1C d/-dimensional space-time and hence  m. Of / D  m.0; f / is the time-zero
�eld of it.

Proposition 3.6. Let m � 0 and f 2 D.Hm/. Then the operator-valued function:
t 7!  m.t; f / 2 B.F. yHD// on R is differentiable in the operator norm topology
and obeys the free functional Dirac equation

i
d m.t; f /

dt
D  m.t; Hmf /:

Proof. Let " 2 R n ¹0º and

�" WD i
 m.t C "; f / �  m.t; f /

"
�  m.t; Hmf /:

Then we have
�" D y m.eit yHmg"/;

where

g" WD
�

� i .e
i" yHm � 1/
"

� yHm
� Of:

We have for all h 2 yHD

k y m.h/k � kTmChk C kTm�h�k � 2khk;
where we have used (34). Hence k�"k � 2kg"k. Since Of 2 D. yHm/, it follows that
lim"!0 kg"k D 0. Hence lim"!0 k�"k D 0.
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One can show that, for all f 2 HD,

 m.t; f / D eitH0;m y m. Of /e�itH0;m; t 2 R; (35)

where H0;m WD d�.Em/ is the second quantization of the multiplication operator
Em (e.g., p. 8 of [3]). The operator H0;m is the Hamiltonian of the free quantum
Dirac �eld with mass m in momentum representation.

We now state and prove one of the main results in this paper.

Theorem 3.7. Let m1 6D m2 (m1; m2 � 0). Then .F. yHD/; �m1
/ and .F. yHD/; �m2

/

are inequivalent.

Proof. By Theorem 2.11, we need only to prove that, if m1 6D m2, then Tm1C xT �
m2�

or Tm1� xT �
m2C is not Hilbert–Schmidt. It is easy to see that

.Tm1C xT �
m2�f /r.k/ D

�=2X

sD1
Krs.k/ Qfs.k/; f D .fs/

�=2
sD1 2 yHD�; r D 1; : : : ;

�

2
;

(36)
where

Krs.k/ WD hum1
.k; r/; vm2

.k; s/iC� ; k 2 R
d�; r; s D 1; : : : ;

�

2
: (37)

By (22), we have Krs.k/ D her ; dm1
.k/dm2

.k/�esC�=2i. Using (15), (19), and the
orthogonality her ; esC�=2i D 0 (r; s D 1; : : : ; �=2), we obtain

Krs.k/ D .m2 �m1/Fm1;m2
.k/her ; ˛kesC�=2i; r; s D 1; : : : ;

�

2
;

where

Fm1;m2
.k/ WD 1

2
p
Em1

.k/Em2
.k/.m1 CEm1

.k//.m2 CEm2
.k//

�
1C m1 Cm2

Em1
.k/CEm2

.k/

�
:

It follows from (15) that ˛kesC�=2 2 ker.ˇ � 1/; s D 1; : : : ; �=2. Hence

�=2X

rD1
jher ; ˛kesC�=2ij2 D k˛kesC�=2k2 D k2;

where we have used (19). Therefore

�=2X

rD1
jKrs.k/j2 D .m2 �m1/2Fm1;m2

.k/2k2: (38)
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Let m1 6D m2. Suppose that Tm1C xT �
m2� were Hilbert–Schmidt. Denote by yKrs

the multiplication operator by the function Krs.k/ on L2.Rd�/. Then, by (36), yKrs
is Hilbert–Schmidt. Hence

L WD
�=2X

rD1
yK�
rs

yKrs

is Hilbert–Schmidt. By equation (38),L is the multiplication operator by the function
.m2 � m1/

2Fm1;m2
.k/2k2. This function is continuous on Rd� and positive for all

jkj > 0. Hene �.L/ includes an open interval in Œ0;1/. Hence L is not Hilbert–
Schmidt, since the spectrum of a Hilbert–Schmidt operator is purely discrete in
Cn¹0º. Therefore we have a contradiction. Thus Tm1C xT �

m2� is not Hilbert–Schmidt.

3.4 An interacting quantum Dirac �eld

LetHm be a self-adjoint operator onF. yHD/whichmay depend onm. Then the time-t
quantum Dirac �eld of mass m with Hamiltonian Hm is de�ned by

 m.t; f / WD eitHm y m. Of /e�itHm ; f 2 HD; t 2 R:

This is a general form of interacting quantum Dirac �elds whose time-zero �eld is
taken to be y m. Of /. The time-t free quantum Dirac �eld is given by the case where
Hm D H0;m (see (35)).

Let
�m.t / WD ¹ m.t; f /;  .t; f /� j f 2 HDº:

Then .F. yHD/; �m.t // is an irreducible representation of the CAR over HD. Since
eitHm is unitary, the following corollary immediately follows from Theorem 3.7:

Corollary 3.8. Let m1 6D m2. Then, for all t 2 R, .F. yHD/; �m1
.t // and .F. yHD/,

�m2
.t // are inequivalent.

4 A generalization

In this section we brie�y describe a generalization of the time-zero quantum Dirac
�eld y . Of / (f 2 HD).

Let U be the set of pairs .u; v/ of C�-valued Borel measurable functions u and v
on Rd� � ¹1; : : : ; �=2º such that, for a.e. k 2 Rd�, ¹u.k; s/; v.k; s/ j s D 1; : : : ; �=2º
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is an orthonormal basis of C� . For each .u; v/ 2 U, we de�ne TC.u/W yHD ! yHDC
and T�.v/W yHD ! yHD� as follows (cf. (27) and (28)):

TC.u/f WD .u.�; s/�f /�=2
sD1 2 yHDC;

T�.v/f WD . Qv.�; s/ Qf /�=2
sD1 2 yHD�;

for f 2 yHD. Then, in the same way as in the proof of Lemma 3.1, one can prove the
following relations:

TC.u/�TC.u/C xT�.v/� xT�.v/ D I;

TC.u/TC.u/� D I; T�.v/T�.v/� D I;

TC.u/T�.v/
� D 0; T�.v/TC.u/

� D 0:

Hence .TC.u/; T�.v// is an element ofT�. yHD/. Therefore, introducing the operators

O u;v.f / WD a.TC.u/f; 0/C a.0; T�.v/f �/�; f 2 yHD

and
O�.u; v/ WD ¹ y u;v.f /; y u;v.f /� j f 2 yHDº;

we see that .F. yHD/; O�.u; v// is an irreducible representation of the CAR over yHD.
Clearly this class of representations includes .F. yHD/; O�m/, hence being a generaliza-
tion of it.

As for the family ¹.F. yHD/; O�.u; v// j .u; v/ 2 Uº of representations of the CAR
over yHD, we have the following inequivalence theorem.

Theorem 4.1. Let .u1; v1/ and .u2; v2/ be in U. Then the two representations
.F. yHD/; O�.u1; v1// and .F. yHD/; O�.u2; v2// are inequivalent if and only if, for some
.r; s/, there exists a non-null Borel set B � Rd� such that, for all k 2 B ,

hu1.k; r/; v2.k; s/iC� 6D 0 or hu2.k; r/; v1.k; s/iC� 6D 0:

Proof. By Theorem 2.11, the two representations under consideration are inequiva-
lent if and only if TC.u1/T�.v2/

�
or T�.v1/TC.u2/

�
is not Hilbert–Schmidt.

In the same way as in the case of (36), one can show that

.TC.u1/T�.v2/
�
f /r.k/ D

�=2X

sD1
Grs.k/ Qfs.k/; f 2 yHD; r D 1; : : : ;

�

2
; a.e. k;

where
Grs.k/ WD hu1.k; r/; v2.k; s/iC� :
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It is easy to see that TC.u1/T�.v2/
�
is not Hilbert–Schmidt if and only if, for some

.r; s/, the multiplication operator yGrs by the function Grs is not Hilbert–Schmidt. In
general, the multiplication operator on L2.Rd�/ by a function F is Hilbert–Schmidt
if and only if F.k/ D 0 a.e.k 2 Rd�. Hence yGrs is not Hilbert–Schmidt if and only
if there exists a non-null Borel set B � Rd� such that, for all k 2 B , Grs.k/ 6D 0.
Thus TC.u1/T�.v2/

�
is not Hilbert–Schmidt if and only if, for some .r; s/, there

exists a non-null Borel set B � Rd� such that, for all k 2 B , Grs.k/ 6D 0.
Note that T�.v1/TC.u2/

�
is not Hilbert–Schmidt if and only if TC.u2/T�.v1/

�

is not Hilbert–Schmidt. Hence one can apply the preceding result to the case .u1; v2/
replaced by .u2; v1/ to conclude that T�.v1/TC.u2/

�
is not Hilbert–Schmidt if and

only if, for some .r; s/, there exists a non-null Borel set B � Rd� such that,
hu2.k; r/; v1.k; s/iC� 6D 0.

5 The case of quantum Dirac �elds on d-dimensional

boxes

In Theorem6.12 in [2], it is shown that the time-zero quantum scalar �elds of different
positive masses on a bounded region in Rd are equivalent if and only if d � 3, in
contrast to the case of the in�nite space Rd . It is natural to ask if quantum Dirac
�elds on a bounded region in Rd have similar properties. In this section we give
an answer to this question. For simplicity, we consider quantum Dirac �elds on the
d -dimensional box

M WD I1 � � � � � Id ; Ij WD
h

� Lj

2
;
Lj

2

i
.Lj > 0; j D 1; : : : ; d /:

Let

�j WD
°2�
Lj
n
ˇ̌
ˇ n 2 Z

±
;

where Z is the set of all integers, and

� WD �1 � � � � � �d D ¹k D .k1; : : : ; kd / j kj 2 �j ; j D 1; : : : ; dº:

For each k 2 � , we de�ne a function �k onM by

�k.x/ WD 1p
L1 : : :Ld

eikx ; x 2 M:
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It is well known that ¹�k j k 2 �º is a complete orthonormal system (CONS) of
L2.M/. Hence the mapping Ud WL2.M/ ! `2.�/ (the Hilbert space of absolutely
square summable sequences on �) de�ned by

Udf .k/ WD h�k; f iL2.M/ ; f 2 L2.M/; k 2 �;

is unitary.
For each j D 1; : : : ; d , the multiplication operator by the j th coordinate function

kj in � is self-adjoint. We denote it by the same symbol kj . Then the operator

p
.M/
j WD U�1

d kjUd

is a self-adjoint operator onL2.M/withD.p.M/
j / D U�1

d
D.kj /. The operator p

.M/
j

is called the j -th momentum operator inM with the periodic boundary condition.
As a free Dirac operator on the Hilbert space

H
.M/
D WD L2.M IC�/

with mass m > 0, we take the following one:

H .M/
m WD

dX

jD1
j̨p

.M/
j Cmˇ:

The operator H .M/
m is self-adjoint and the operator equality

UdH
.M/
m U�1

d D h.M/
m

holds with h.M/
m being the multiplication operator on the Hilbert space

yH.M/
D WD UdH

.M/
D D

�M
`2.�/:

by the matrix-valued function

h.M/
m .k/ WD

dX

jD1
j̨kj Cmˇ; k 2 �:

As in the case of the in�nite space Rd , we have

yH.M/
D D yH.M/

DC ˚ yH.M/
D� ;

where yH.M/
D˙ WD L�=2

`2.�/.



Inequivalence of quantumDirac �elds 51

Objects in Section 3 such as Em; dm; um; vm have counterparts in the theory
on M in an obvious way. We write them with upper suf�x “.M/” (for instance,
E
.M/
m .k/ WD Em.k/; k 2 �). We de�ne the operators T .M/

m˙ W yH.M/
D ! yH.M/

D˙ by

Tm˙ with um and vm replaced by u.M/
m and v.M/

m respectively. Then it is easy to see
that Lemma 3.1 holds with Tm˙ replaced by T .M/

m˙ .

We denote by aM .�/ the annihilation operator on the fermion Fock spaceF. yH.M/
D /

and de�ne a quantum Dirac �eld onM by

 .M/
m .f / WD aM .T

.M/
mC Udf; 0/C aM .0; T

.M/
m� .Udf /

�/�; f 2 H
.M/
D :

Let
�.M/
m WD ¹ .M/

m .f /;  .M/
m .f /� j f 2 H

.M/
D º:

Then, as in Proposition 3.4, we can show that .F. yH.M/
D /; �

.M/
m / is an irreducible

representation of the CAR over H.M/
D . Now we are ready to prove the following

theorem.

Theorem 5.1. Let m1 6D m2 (m1; m2 > 0). Then .F. yH.M/
D /; �

.M/
m1

/ is equivalent to

.F. yH.M/
D /; �

.M/
m2

/ if and only if d D 1.

Proof. Throughout the proof, we write Tj˙ WD T
.M/
mj ˙; j D 1; 2. It is easy to see that

.T1C xT �
2�w/r.k/ D

�=2X

sD1
Krs.k/ Qws.k/;

for w D .ws/
�=2
sD1 2 yH.M/

D� , r D 1; : : : ; �=2, k 2 � , whereKrs is de�ned by (37) with
domain � . For each k 2 � , we de�ne a vector ek 2 `2.�/ by

ek.k
0/ D ıkk0 ; k0 2 �:

It is easy to see that ¹ekºk2� is a CONS of `2.�/. For s D 1; : : : ; �=2, we de�ne

e
.s/

k
D .0; : : : ; 0;

s-th
ek ; 0; : : : ; 0/ 2 yH.M/

D� :

Then ¹e.s/
k

j k 2 �; s D 1; : : : ; �=2º is a CONS of yH.M/
D� . We have

.T1C xT �
2�e

.s/

k
/r .k

0/ D Krs.k
0/ık;�k0 ; k0; k 2 �:

Hence
�=2X

sD1

X

k2�
kT1C xT �

2�e
.s/

k
k2 D

�=2X

r;sD1

X

k2�
jKrs.k/j2:
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Hence T1C xT �
2� is Hilbert–Schmidt if and only if

P
k2� jKrs.k/j2 < 1 for

r; s D 1; : : : ; �=2. In the present case too, we have (38). Hence it follows that T1C xT �
2�

is Hilbert–Schmidt if and only if
P
k2� Fm1;m2

.k/2k2 < 1.
It is easy to see that

1

2.m1 CEm1
.k//.m2 CEm2

.k//
� Fm1;m2

.k/ � 1

Em1
.k/Em2

.k/
; k 2 �:

Hence, for each R > 0, there exist positive constants C1 and C2 such that, for all
jkj � R,

C1

k2
� Fm1;m2

.k/ � C2

k2
:

Therefore
C 21
k2

� Fm1;m2
.k/2k2 � C 22

k2
:

It is obvious that
P
k2� 1=k2 < 1 if and only if d D 1. Hence T1C xT �

2� is Hilbert–
Schmidt if and only if d D 1. Similarly, we see that T1� xT �

2C is Hilbert–Schmidt if
and only if d D 1. Thus, by Theorem 2.10, we obtain the desired result.

Remark 5.2. Theorem 5.1 is interesting in that it is different from a corresponding
theorem in the theory of quantum scalar �elds on M (Theorem 6.12 in [2]), where,
in the cases d D 2; 3 too, the time-zero quantum scalar �elds of different masses are
equivalent.
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On a class of Schrödinger operators

exhibiting spectral transition

Diana Barseghyan and Olga Rossi

This work is dedicated to Pavel Exner on the occasion of his anniversary.

1 Introduction

The idea of HermannWeyl to analyze spectra of quantum systems semiclassically by
looking at the phase space allowed for the corresponding classical motion is one of the
most seminal in modern mathematical physics. However, its validity is not universal.
Various examples of systems which have purely discrete spectrum despite the fact
that the respective phase space volume is in�nite were constructed in the last three
decades. A classical one belongs to B. Simon [12] and describes a two-dimensional
Schrödinger operator with the potential jxyjp . A modi�cation of this example was
studied in [8]. A related problem concerns spectral properties of Dirichlet Laplacians
in regions with hyperbolic cusps: we refer to the paper [6]. Another example of this
type is the so-called Smilansky model ([13], [14], [9], [4], and [5]) and its regular
version [1].

In [3] and [2] it has been shown that a similar spectral behaviour can occur also
for Schrödinger operators with potentials unbounded from below. Furthermore, a
model was constructed, which exhibits a nontrivial spectral transition as the coupling
constant changes. It is represented by the class of operators

Lp.�/WLp.�/ D �� C .jxyjp � �.x2 C y2/
p=.pC2// ; p � 1; (1)

on L2.R2/ in the standard Cartesian coordinates .x; y/ inR2; the parameter � in the
second term of the potential is non-negative.

It was established that there is a critical value of the coupling constant�, expressed
explicitly as the ground-state eigenvalue of the corresponding (an)harmonic oscillator
Hamiltonian �d2=dx2 C jxjp on L2.R/, such that the spectrum of Lp.�/ is below
bounded and purely discrete for � < �crit, while for � > �crit it covers the whole real
axis. Moreover, in the critical case the essential spectrum of the operator Lp.�crit/
covers the half line Œ0;1/, while the negative spectrum can be only discrete, and
there is a range of values of p for which Lp.�crit/ has a single negative eigenvalue.
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Since the operator (1) is considered for any p � 1, it is natural to ask about
the limit p ! 1 which corresponds to a particle con�ned to a region with four
hyperbolic “horns,” D D ¹.x; y/ 2 R2W jxyj < 1º, described by the Schrödinger
operatorHD.�/WHD.�/ D �� ��.x2Cy2/ with a non-negative parameter �
and Dirichlet condition on the boundary @D. This model was studied in the paper [3]
for 0 � � < 1. The aim of the present paper is to study the properties of the operator
HD.�/ for arbitrary � � 0. This means, in particular, that we extend the results to
the “critical case” � D �2=4 and “supercritical case” � > �2=4, not covered in [3].

We shall consider the operator HD.�/ initially de�ned on the set

zC 20 . xD/ D ¹u 2 C 2. xD/Wu D 0 on @D; supp.u/ is a compact setº:

We show that for � � �2=4 the operatorHD.�/ is non-negative and therefore one can
construct its self-adjoint extension using the Friedrichs method.

Using the fact that densily de�ned and symmetric operator is always closable, in
case if � > �2=4 we deal with its closureHD.�/. The question of its self-adjointness
we postpone to a next paper.

Since the ground state eigenvalue of (an)harmonic oscillator converges to �2=4 as
p ! 1, it is natural to expect that the spectrum of HD.�/ is discrete for � < �2=4.
We show that the spectrum of (the self-adjoint extension of)HD.�/ is purely discrete
for all 0 � � < �2=4 and study the properties of the eigenvalues. In the critical case
� D �2=4 we establish that the spectrum coincides with the half line Œ0;1/. In the
remaining case, � > �2=4, we show that the spectrum of the operatorHD.�/ contains
the whole real line.

2 The subcritical case

The �rst important observation is that spectral properties of the operator HD.�/
depend crucially on the value of the parameter �. Actually, we have to distinguish
two cases.

The spectral regime we are primarily interested in occurs for small values of �.
We have the following result.

Theorem 2.1. For any � 2 Œ0; �2=4� the operatorHD.�/ initially de�ned on zC 20 . xD/
is non-negative.

Proof. Since the ground state eigenvalue of the one dimensional Dirichlet Laplacian
�d2=dx2 on the interval .�1=jyj; 1=jyj/ with �xed non zero y is �2y2=4, then, with a
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slight abuse of notation, for any function u 2 H1
0.D/, that is satisfying the condition

uj@D D 0, we can write

ˆ

D

ˇ̌
ˇ̌@u
@x

ˇ̌
ˇ̌
2

dxdy D
ˆ 0

�1

ˆ �1=y

1=y

ˇ̌
ˇ̌@u
@x

ˇ̌
ˇ̌
2

dx dy C
ˆ 1

0

ˆ 1=y

�1=y

ˇ̌
ˇ̌@u
@x

ˇ̌
ˇ̌
2

dx dy

� �2

4

ˆ 0

�1

ˆ �1=y

1=y

y2ju.x; y/j2dx dy

C �2

4

ˆ 1

0

ˆ 1=y

�1=y

y2ju.x; y/j2dx dy

D �2

4

ˆ

D

y2ju.x; y/j2dx dy:

(2)

In a similar way one establishes that

ˆ

D

ˇ̌
ˇ̌@u
@y

ˇ̌
ˇ̌
2

dx dy � �2

4

ˆ

D

x2ju.x; y/j2dx dy: (3)

Hence, in view of (2) and (3), for any function u 2 H1
0.D/ we have

ˆ

D

.HD.�/.u// Nudx dy

D
�
1� 4�

�2

�ˆ

D

jruj2dx dy C 4�

�2

�
ˆ

D

jruj2dx dy

� �2

4

ˆ

D

.x2 C y2/juj2dx dy

�

D
�
1� 4�

�2

�ˆ

D

jruj2dx dy C 4�

�2

�
ˆ

D

ˇ̌
ˇ̌@u
@x

ˇ̌
ˇ̌
2

dx dyC
ˆ

D

ˇ̌
ˇ̌@u
@y

ˇ̌
ˇ̌
2

dx dy

� �2

4

ˆ

D

.x2 C y2/juj2dx dy

�

�
�
1 � 4�

�2

� ˆ

D

jruj2dxdy;

(4)

which establishes the theorem.
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Since the quadratic form corresponding to operator HD.�/ initially de�ned on
zC 20 . xD/ is non-negative for all � 2 Œ0; �2=4�, thus, the construction of the self-adjoint
extension via Friedrichs method is possible. For the sake of brevity, we will use for
it the same symbol HD orHD.�/.

Theorem 2.2. If � < �2=4 the spectrum of HD.�/ is purely discrete. Moreover,
for the corresponding eigenvalues, denoted by ¹ ǰ .�/º1

jD1; � < �2=4, the following
expression holds

ǰ .�/ D cj .�/ �j ; j D 1; 2; : : : ; (5)

where .1 � 4�=�2/ � cj .�/ � 1 and �j , j D 1; 2; : : :, are the eigenvalues of the
Dirichlet Laplacian ��D arranged in the ascending order and �j � � j=ln j .

Proof. For � < �2=4 estimates (2)–(4) show that

Dom.Q.HD.�/// D H1
0.D/;

where Q.HD.�// is the quadratic form corresponding to operator HD.�/. Next,
again using (4) one gets

HD.�/ � �
�
1� 4�

�2

�
�D:

Thus combining the minimax principle with the classical result of B. Simon [12] we
�nd that the spectrum of HD.�/ for any � < �2=4 is purely discrete. Moreover,
the following eigenvalue bound holds

ǰ .�/ �
�
1 � 4�

�2

�
�j ; j D 1; 2; : : : ; (6)

where�j , j D 1; 2; : : :, are the eigenvalues of ��D arranged in the ascending order.
Using the non-negativeness of � and the inequality

ˆ

D

.HD.�/.u// Nudxdy �
ˆ

D

jruj2dxdy;

we have that
HD.�/ � ��D

and therefore

ǰ .�/ � �j ; j D 1; 2; : : : : (7)

The asymptotic eigenvalue distribution of the Dirichlet Laplacian ��D is well
known (see [7]),

N.ƒ/ � 1

�
ƒ lnƒ:



On a class of Schrödinger operators exhibiting spectral transition 59

By means of the known inverse asymptotic formula (see Section 9 of [11]) we get for
the spectrum of ��D the expression

�j � � j

ln j
(8)

as j ! 1, and this together with (6) and (7) establishes (5).

Remark 2.3. Let � < �2=4. Then for any � > 0 there exists a natural numberM.�/
such that for the eigenvalue sum of operatorHD.�/ the following lower bound holds
true:

NX

jD1
ǰ .�/ � .1� �/

.�2 � 4�/
4�

.N � 2/2
lnN

; N > M.�/:

On the other hand, the following upper bound is valid

NX

jD1
ǰ .�/ � .1C �/�

N 2

lnN
; N > M.�/: (9)

Proof. The asymptotics (8) means that for any positive � there existsM.�/ 2 N such
that

.1� �/ �j
ln j

� �j � .1C �/
� j

ln j
; (10)

for all j > M.�/. Thus (5) provides

NX

jD1
ǰ .�/ �

2ŒN=2�X

jDŒN=2�
ǰ .�/

� ˇŒN=2�.�/
hN
2

i

�
�
1 � 4�

�2

�hN
2

i
�ŒN=2�

� .1 � �/
�
1� 4�

�2

�
�
hN
2

i2 1

ln
hN
2

i

� .1 � �/.�
2 � 4�/

4�

.N � 2/2
lnN

:

To establish (9) one needs to carry out a similar proof. More precisely, in view
of (5) and (10),

NX

jD1
ǰ .�/ � N ˇN .�/ � N �N � .1C �/�

N 2

lnN
;
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3 The critical case

Now we consider the critical case � D �crit D �2=4. The following theorem holds
true.

Theorem 3.1. The spectrum of HD.�crit/ coincides with the half line Œ0;1/.

Proof. In view of Theorem2.1 the operator HD.�crit/ is non-negative. To demon-
strate that any non-negative number � belongs to the essential spectrum of the opera-
torHD.�crit/we are going to use Weyl’s criterion (Theorem VII.12 in [10]): we have
to �nd a sequence ¹ kº1

kD1 � Dom.HD.�crit// such that k kk D 1 which contains
no convergent subsequence and

kHD.�crit/ k � � kk �! 0 as k ! 1:

We de�ne the following sequence de�ned onD

 k.x; y/ WD cos
��xy
2

�
f
�y
k

�
ei

p
�y ;

where f is a smooth function with suppf � Œ1; 2� satisfying
´ 2

1 f
2.z/dz D 1.

We note that for a given k one can achieve that k kkL2.D/ � 1
2
as the following

estimates show,
ˆ

D

ˇ̌
ˇ cos

��xy
2

�
f
�y
k

�
ei

p
�y
ˇ̌
ˇ
2

dx dy

D
ˆ 2k

k

ˆ 1=y

�1=y

cos2
��xy
2

�
f 2
�y
k

�
dx dy

D
ˆ 2k

k

ˆ 1=y

�1=y

1

2
.1C cos.�xy// f 2

�y
k

�
dx dy

D
ˆ 2k

k

ˆ 1

�1
1

2y
.1C cos.�t//f 2

�y
k

�
dt dy

D
ˆ 2k

k

1

y
f 2
�y
k

�
dy

D
ˆ 2

1

f 2.z/

z
dz

� 1

2

ˆ 2

1

f 2.z/dz

D 1

2
:
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The second derivatives of the functions  k are

@2 k

@x2
D ��

2 y2

4
cos

��xy
2

�
f
�y
k

�
ei

p
�y

and

@2 k

@y2
D
�

� �2x2

4
cos

��xy
2

�
f
�y
k

�
� �x

k
sin
��xy
2

�
f 0
�y
k

�

� i�
p
�x sin

��xy
2

�
f
�y
k

�
C 2i

p
�

k
cos

��xy
2

�
f 0
�y
k

�

C 1

k2
cos

��xy
2

�
f 00
�y
k

�
� � cos

��xy
2

�
f
�y
k

��
ei

p
�y :

(11)

Our aim is to show that choosing k suf�ciently large one can make all terms except
of the last one at the right-hand side of (11) as small as we wish. Changing the
integration variables, we get for the �rst term the following estimate,

ˆ

D

ˇ̌
ˇei

p
�y �

2x2

4
cos

��xy
2

�
f
�y
k

�ˇ̌
ˇ
2

dx dy

D �4

16

ˆ 2k

k

ˆ 1=y

�1=y

x4 cos2
��xy
2

�
f 2
�y
k

�
dx dy

D �4

16

ˆ 2k

k

ˆ 1

�1
t4

y5
cos2

��t
2

�
f 2
�y
k

�
dt dy

D �4

16

ˆ 2k

k

1

y5
f 2
�y
k

�
dy
ˆ 1

�1
t4 cos2

��t
2

�
dt

� �4

16k4

ˆ 2

1

jf .z/j2dz
ˆ 1

�1
t4 cos2

��t
2

�
dt

D �4

16k4

ˆ 1

�1
t4 cos2

��t
2

�
dt;

where the right-hand side tends to zero as k ! 1. In the same way we establish that
for large enough k all the terms except of the last one in (11) can be made small.

Similarly one can prove that for large k the integral
ˆ

D

x4 cos2
��xy
2

�
f 2
�y
k

�
dx dy

is again as small as we wish.
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Consequently, for any �xed " > 0 one can choose k large enough such that
ˆ

D

jHD.�crit/ k � � kj2.x; y/dx dy

D
ˆ

D

ˇ̌
ˇ � @2 k

@x2
� @2 k

@y2
� �2

4
.x2 C y2/ k � � k

ˇ̌
ˇ
2

dx dy

�
ˆ

D

ˇ̌
ˇ�

2 y2

4
cos

��xy
2

�
f
�y
k

�
C � cos

��xy
2

�
f
�y
k

�

� �2

4
.x2 C y2/ cos

��xy
2

�
f
�y
k

�
� � cos

��xy
2

�
f
�y
k

�ˇ̌
ˇ
2

dx dy C "

D �4

16

ˆ

D

x4 cos2
��xy
2

�
f 2

�y
k

�
dx dy C "

< 2":

(12)

To complete the proof we �x a sequence ¹"j º1
jD1 such that "j & 0 holds as j ! 1

and to any j we construct a function  k."j / such that the supports for different j ’s
do not intersect each other; this can be achieved by choosing k."j / > 2k."j�1/.
The norms of HD.�crit/ k."j / � � k."j / satisfy the inequality (12) with 2"j on the
right-hand side, and by construction the sequence  k."j / converges weakly to zero;
this yields the desired Weyl sequence for any non-negative number �.

4 The supercritical case

Let� > �2=4 and letHD.�/ denote the closure of the operatorHD.�/ initially de�ned
on zC 20 . xD/. Our next result is the following.

Theorem 4.1. For any � > �2=4 the spectrum ofHD.�/ contains the real line R.

Proof. We contruct a Weyl sequence ¹ kº1
kD1 � Dom.HD.�// (for any real num-

ber �) which satis�es
ˆ

D

j k.x; y/j2dx dy � 1

2
; k D 1; 2; : : : ;

and
ˆ

D

ˇ̌
HD.�/ k � � k

ˇ̌2
dxdy �! 0 as k ! 1:

This shows that number � can not belong to the resolvent set ofHD.�/, Q.E.D.
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We�x a positive " and choose a natural number k D k."/with which we associate
a function �k � C 20 .1; k/ satisfying the following conditions

ˆ k

1

1

z
�2k.z/dz D 1 and

ˆ k

1

z.�0
k.z//

2dz < ": (13)

To give an example, consider the function constructed in [1]

Q�k.z/ D 8 ln3 z

ln3 k
�¹1�z�p

kº.z/C 2 ln k � 2 ln z
ln k

�¹p
kC1�z�k�1º.z/

C gk.z/�¹p
k<z<

p
kC1º.z/C qk.z/�¹k�1<z�kº.z/;

where gk and qk are interpolating functions chosen in such a way that Q�k 2 C 20 .1; k/.
The �rst integral in (13) is positive for Q�k , in fact we have

ˆ

p
k

1

1

z
Q�2k.z/dz � 1

4
;

hence we can de�ne

�k.z/ D
�
ˆ k

1

1

z
Q�2k.z/dz

��1=2

Q�k.z/:

This function satis�es by de�nition the �rst condition of (13) and one can check that
it also satis�es the second one provided k is suf�ciently large; this follows from the
fact that

ˆ k

1

z.�0
k.z//

2dz D O

� 1

ln k

�
as k ! 1.

Such functions allow us to construct theWeyl sequence we seek. Given a function
�k with the described properties, we de�ne

 k.x; y/ WD cos
��xy
2

�
ei��.y/�k

� y
nk

�
C f .xy/

y2
ei��.y/�k

� y
nk

�
;

where

��.y/ D
ˆ y

j�j1=2

j˛j

p
˛2t2 C � dt

with the real number ˛ to be chosen later, the smooth function f W Œ�1; 1� ! R

satisfying the boundary conditions f .˙1/ D 0, and nk 2 N also will be chosen
later. First we establish that for any given k one can achieve that k kkL2.D/ � 1=2

holds by choosing nk large enough.
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The following estimates show

ˆ

D

ˇ̌
ˇ cos

��xy
2

�
ei��.y/�k

� y
nk

�ˇ̌
ˇ
2

dx dy

D
ˆ knn

nk

ˆ 1=y

�1=y

ˇ̌
ˇ cos

��xy
2

�
�k

� y
nk

�ˇ̌
ˇ
2

dx dy

D
ˆ knn

nk

ˆ 1

�1
1

y

ˇ̌
ˇ cos

��t
2

�
�k

� y
nk

�ˇ̌
ˇ
2

dt dy

D
ˆ 1

�1
cos2

��t
2

�
dt
ˆ knn

nk

1

y

ˇ̌
ˇ�k

� y
nk

�ˇ̌
ˇ
2

dy

D
ˆ knn

nk

1

y

ˇ̌
ˇ�k

� y
nk

�ˇ̌
ˇ
2

dy

D
ˆ k

1

1

z
j�k.z/j2dz

D 1

and

ˆ

D

ˇ̌
ˇ̌ 1
y2
f .xy/ei��.y/�k

� y
nk

�ˇ̌
ˇ
2

dx dy D
ˆ knk

nk

ˆ 1=y

�1=y

ˇ̌
ˇ 1
y2
f .xy/�k

� y
nk

�ˇ̌
ˇ
2

dx dy

D
ˆ knk

nk

ˆ 1

�1
1

y

ˇ̌
ˇ 1
y2
f .t/�k

� y
nk

�ˇ̌
ˇ
2

dt dy

� 1

n5
k

ˆ knk

nk

ˆ 1

�1

ˇ̌
ˇf .t/�k

� y
nk

�ˇ̌
ˇ
2

dt dy

D 1

n4
k

ˆ 1

�1
jf .t/j2dt

ˆ k

1

j�k.z/j2dz;

which establish our claim. Let us now prove that the inequality

kHD.�/ k � � kkL2.D/ < c"

with a �xed constant c holds for k D k."/.
By a straightforward calculation one gets

@2 k

@x2
D ��

2y2

4
cos

��xy
2

�
ei��.y/�k

� y
nk

�
C f 00.xy/ei��.y/�k

� y
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�
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and

@2 k
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D ��

2x2

4
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�
ei��.y/�k

� y
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�

� i�x
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˛2y2 C � sin
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�
ei��.y/�k

� y
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�

� �x
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sin
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�
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k

� y
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�
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�
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�
:

(14)
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We want to show that choosing nk suf�ciently large one can make some terms at the
right hand side of (14) as small as we wish. Changing the integration variables, we
get the following estimate,

ˆ

D

ˇ̌
ˇ�

2x2

4
cos

��xy
2

�
ei��.y/�k

� y
nk

�ˇ̌
ˇ
2

dx dy

D �4

16

ˆ knk

nk

ˆ 1=y

�1=y

ˇ̌
ˇx2 cos

��xy
2

�
�k

� y
nk

�ˇ̌
ˇ
2

dx dy

D �4

16

ˆ knk

nk

1

y5

ˇ̌
ˇ�k

� y
nk

�ˇ̌
ˇ
2

dy
ˆ 1

�1
t4 cos2

��t
2

�
dt

� �4

16n4
k

ˆ k

1

j�k.z/j2dz
ˆ 1

�1
t4 cos2

��t
2

�
dt;

where the last integral is small. In the same way we establish the smallness of all the
terms of (14) except of the following:

�i�x
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�
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�
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�
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� y
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�
;

�˛
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y2
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� y
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�
:

To continue the proof we are going to use also the smallness of the integrals
ˆ
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and
ˆ

D
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2
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dx dy;

ˆ
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which can be proved in a similar way.
Consequently, for the �xed " > 0 one can choose nk large enough such that
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Nowwe choose˛ D p
4���2=2 and f .t/ D ig.t/, where g.t/ is a solution of equation

g00.t /C �2

4
g.t/ � ˛�t sin

��t
2

�
C ˛ cos

��t
2

�
D 0 (16)

de�ned on interval Œ�1; 1� with Dirichlet boundary conditions. Since the solution
of the Dirichlet problem h00 C �2=4h D 0 on interval Œ�1; 1� corresponds with one
dimensional subspace generated by cos.�t=2/ then the equation

ˆ 1

�1

�
� ˛�t sin

��t
2

�
C ˛ cos

��t
2

��
cos

��t
2

�
dt D 0

guarantees the existence of the solution for (16). Thus, in view of construction (13),
the inequality (15) establishes that

ˆ

D

jHD.�/ k � � kj2dx dy < .8� � 2�2 C 1/": (17)

Finally we �nish the proof in a similar way as in the previous section: we �x a
sequence ¹"j º1

jD1 such that "j & 0 holds as j ! 1 and to any j we construct a
function  k."j / such that the supports for different j ’s do not intersect each other;
this can be achieved by choosing each next nk."j / > k."j�1/nk."j �1/ . The norms

ofHD.�/ k."j / � � k."j / satisfy the inequality (17) with .8�� 2�2 C 1/"j on the
right-hand side, and by construction the sequence  k."j / converges weakly to zero;
this yields the desired Weyl sequence for any real number �.
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On the quantum mechanical three-body problem

with zero-range interactions

Giulia Basti and Alessandro Teta

Dedicated to Pavel

1 Introduction

The quantum mechanical three-body problem with pairwise, local zero-range inter-
actions is a subject of considerable interest both for physical applications and for its
peculiar mathematical structure.

The model has been introduced around the middle of the last century to describe
nuclear interactions at low energy. More recently, interesting applications have been
developed also in the physics of cold atoms, particularly in connection with the study
of the E�mov effect. This is essentially due to the experimental possibility to re-
alize, via the so-called Feshbach resonance, situations where the interaction is well
described by a zero-range force, in particular in the unitary limit. Roughly speaking,
unitary limit means that the two-body interaction is characterized by a zero-energy
resonance or, equivalently, by an in�nite value of the scattering length.

The correct de�nition of the Hamiltonian, the conditions for the occurrence of
the E�mov effect and the analysis of the stability problem, i.e., the existence of a �-
nite lower bound for the Hamiltonian, have been widely studied both in the physical
([4], [5], [6], [7], [10], [14], [23], and [24]) and in the mathematical ([2], [3], [8],
[9], [11], [12], [13], [16], [18], [19], [20], and [22]) literature. Let us mention that in
[2] and in [22] special classes of Hamiltonians with zero-range interactions that are
bounded from below are studied. More precisely, in [2] a positive n-body Hamilto-
nian with non local zero-range interactions is de�ned using the theory of Dirichlet
forms, while in [22] three-body zero-range Hamiltonians with internal structure are
constructed and their spectral properties characterized.

Here we shall review the state of the art concerning the construction of the Hamil-
tonian as a self-adjoint operator. Exploiting a quadratic form method, we also prove
lower boundedness of the Hamiltonian in the case of three identical bosons when the
Hilbert space is suitably restricted, i.e., excluding the “s-wave” subspace.
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The formal Hamiltonian describing three quantum particles in Rd , d D 1; 2; 3,
interacting via a zero-range, two-body interaction can be written as

H D �
3X

iD1

1

2mi
�xi

C
3X

i;jD1
i<j

�ij ı.xi � xj /; (1)

where xi 2 Rd , i D 1; 2; 3, is the coordinate of the i -th particle, mi is the corre-
sponding mass, �xi

is the Laplacian relative to xi , and �ij 2 R is the strength of the
interaction between particles i and j . To simplify the notation we set „ D 1.

In order to give a rigorous meaning to (1) as a self-adjoint operator in L2.R3d /,
the �rst step is to give a mathematical de�nition, i.e., to establish the conditions that
such Hamiltonian must satisfy. We �rst notice that, in any reasonable de�nition,
the interaction term of the Hamiltonian must be non trivial only on the hyperplanesS
i<j ¹xi D xj º, where the coordinates of two particles coincide. As a starting

point, it is therefore natural to consider the operator PH0 de�ned as the free Hamil-
tonian restricted to a domain of smooth functions vanishing in the neighbourhood
of each hyperplane ¹xi D xj º. Such operator is symmetric but not self-adjoint and
one (trivial) self-adjoint extension is obviously the free Hamiltonian. Then we de-
�ne a Hamiltonian for a system of three quantum particles in Rd with a two-body,
zero-range interaction as a non trivial self-adjoint extension of PH0. As a consequence
of the de�nition, any such Hamiltonian acts as the free Hamiltonian outside the hy-
perplanes

S
i<j ¹xi D xj º and it is characterized by a speci�c boundary condition

satis�ed by the wave function at each hyperplane ¹xi D xj º.
The second and more important step is the explicit construction of the self-adjoint

extensions. The two most frequently used techniques are Krein’s theory of self-
adjoint extensions and approximation by regularized Hamiltonians, in the sense of
the limit of the resolvent or of the quadratic form. In dimension one the problem is
relatively simple due to the fact that the interaction term is a small perturbation of the
free Hamiltonian in the sense of quadratic forms. In dimension two a natural class of
Hamiltonians with local zero-range interactions was constructed in [11] and it was
also shown that such Hamiltonians are all bounded from below. In dimension three
the analysis is more delicate and in the rest of the paper we shall discuss the problem
in some detail.

In order to explain the dif�culty, we �rst consider the simpler two-body case
where, in the center of mass reference frame, one is reduced to study a one-body prob-
lem in the relative coordinate x with a �xed ı-interaction placed at the origin. In this
case (see, e.g., [1]) the entire class of self-adjoint extensions describing Hamiltonians
with point interaction can be explicitly constructed. One can show that the domain
D.h˛/ of each Hamiltonian h˛ consists of functions  2 L2.R3/ \H 2.R3 n ¹0º/
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such that
 .x/ D q

jxj C r C o.1/; with r D ˛q; (2)

for jxj ! 0, where q 2 C and ˛ 2 R is a parameter proportional to the inverse of
the scattering length. The relation r D ˛q in (2) should be understood as the gen-
eralized boundary condition satis�ed at the origin by all the elements of the domain.
Moreover, by de�nition h˛ satis�es

.h˛ /.x/ D � 1

2�
.� /.x/; for x ¤ 0; (3)

where � denotes the reduced mass of the two-body problem.
In the three-particle case the characterization of all possible self-adjoint exten-

sions of PH0 is more involved. In order to circumvent the dif�culty, a natural strat-
egy is to construct a class of extensions based on the analogy with the two-body
case. More precisely, one considers an extension of PH0, called Skornyakov–Ter–
Martirosyan (STM) operator H˛, which, roughly speaking, is a symmetric operator
acting on functions ‰ 2 L2.R9/\H 2

�
R9 nSi<j ¹xi D xj º� satisfying the follow-

ing condition for jxi � xj j ! 0:

‰.x1;x2;x3/ D Qij .rij ;xk/

jxi � xj j CRij .rij ;xk/C o.1/; with Rij D ˛ijQij ; (4)

where

rij D mixi Cmjxj

mi Cmj
; (5)

k ¤ i; j , Qij is a suitable function de�ned on the hyperplane ¹xi D xj º and ¹˛ij º
is a collection of real parameters labelling the extension. Notice that in the above
limiting procedure for jxi�xj j ! 0we keep �xed the center of mass of the particles
i; j and the position of the remaining particle. Furthermore, one has

.H˛‰/.x1;x2;x3/ D .Hf‰/.x1;x2;x3/; for xi ¤ xj ; (6)

whereHf is the free Hamiltonian.
Noticeably, the boundary condition (4) de�ning the STM extension of PH0 is a

natural generalization to the three-body case of the condition (2) that characterizes
the two-body case. Unfortunately, unlike (2), (4) does not necessarily de�ne a self-
adjoint operator. Indeed, for a system of three identical bosons it was shown in [12]
that the STM operator is not self-adjoint and all its self-adjoint extensions are un-
bounded from below owing to the presence of an in�nite sequence of energy levels
Ek going to �1 for k ! 1. In [17] this result was generalized to the case of three
distinguishable particles with different masses. This kind of instability is known in
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the literature as the Thomas effect. It should be stressed that the Thomas effect is
strongly related to the well-known E�mov effect (see, e.g., [4]) even if, to our knowl-
edge, a rigorous mathematical investigation of this connection is still lacking.

Here we describe an approach to the stability problem based on the theory of
quadratic forms. In particular, in Section 2 we explicitly construct the quadratic form
naturally associated to the STM operator in the general case of three particles with
different masses.

In Sections 3 and 4 we consider two particular cases where the Hilbert space of
states is suitably restricted, e.g., introducing symmetry constraints on the wave func-
tion. In such cases the quadratic form is shown to be closed and bounded from below,
thus de�ning a self-adjoint and bounded from below Hamiltonian of the system.

In the �rst casewe consider a system of three identical bosons andwe show that in-
stability occurs only in the “s-wave” subspace. More precisely, we restrict the Hilbert
space to the wave functions which are not invariant under rotation of the coordinates
of each particle and we prove that the quadratic form is closed and bounded from
below on such subspace.

In the second case we discuss the antisymmetry constraint. In fact, a wave func-
tion that is antisymmetric under exchange of coordinates of two particles necessar-
ily vanishes at the coincidence points of such two particles, thus making their mu-
tual zero-range interaction ineffective. Therefore, it is reasonable to expect that in
a system of two identical fermions plus a different particle the interaction term in
the Hamiltonian is less singular, thus making the system stable. Indeed, it has been
shown that this is in fact the case for suitable values of the mass ratio (see, e.g., [8],
[9], [19], and [20]).

2 The energy form

We start illustrating the construction of the quadratic form in the simple case of the
one-body Hamiltonian h˛ , formally introduced in Section 1. The idea is to represent
the generic element ofD.h˛/ in the form

 D w C qg (7)

where w is a smooth function, q 2 C and

g.x/ D 1

jxj :
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The singular part qg in the decomposition (7) can be thought as the electrostatic
potential produced by the point charge q placed at the origin. According to decom-
position (7), the boundary condition (2) can be rewritten as

w.0/ D ˛q: (8)

Taking into account (3) and (7), the expectation value of h˛ can be represented as

F˛. / D . ; h˛ /

D lim
"!0

ˆ

jxj>"
dx x .x/

�
� 1

2�
� 

�
.x/

D 1

2�
lim
"!0

ˆ

jxj>"
dx xw.x/.��w/.x/C Nq

2�
lim
"!0

ˆ

jxj>"
dx g.x/.��w/.x/:

Integrating by parts, taking the limit " ! 0 and using (8), we arrive at the following
quadratic form

F˛. / D 1

2�

ˆ

dx jrw.x/j2 C 2�

�
˛jqj2 (9)

which is de�ned on the natural domain

D.F˛/ D ¹ 2 L2.R3/ j  D w C qg; jrwj 2 L2.R3/; q 2 Cº: (10)

It is a simple exercise to show that the form (9)–(10) is closed and bounded from
below. Therefore it de�nes a self-adjoint and bounded from below operator which
obviously coincides with h˛ . One can also notice that, de�ning

g�.x/ D e�p
�jxj

jxj ; � > 0;

the following equivalent representation of the form domain holds

D.F˛/ D ¹ 2 L2.R3/ j  D w� C qg�; w� 2 H 1.R3/; q 2 Cº;

where H s.Rd / denotes the standard Sobolev space in Rd of order s 2 R. Accord-
ingly one has

F˛. / D 1

2�

ˆ

dx .jrw�.x/j2 C �jw�.x/j2 � �j .x/j2/C 2�

�

�
˛ C

p
�
�jqj2:
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In the three-particle case we follow the same idea. We �rst introduce the notation
X D .x1;x2;x3/, P D .p1;p2;p3/ for positions and momenta of the particles,
M D m1 Cm2 Cm3 for the total mass,

�ij D mimj

.mi Cmj /

for the reduced masses and Of for the Fourier transform of f . We set x D jxj for
x 2 R3: Then we introduce the “potential” produced by the “charges” Q D ¹Qij º
distributed on the hyperplanes ¹xi D xj º. With an abuse of notation, we set

.GQ/.X / D
X

i�j
.GQij /.X / D

X

i�j

1

.2�/5�ij

ˆ

dPeiX �P yQij .pi C pj ;pk/

Hf .P/
;

where k ¤ i; j , Hf .P/ denotes the free Hamiltonian in the momentum variables
and with � we refer to the order 1 � 2; 2 � 3; 3 � 1: Following the line of Propo-
sition 6.3 in [13], one shows that GQ solves in the distributional sense the equation

Hf .GQ/.X / D 2�
X

i�j

1

�ij
Qij .rij ;xk/ ı.xi � xj / (11)

where rij is de�ned in (5). In particular this implies

Hf .GQ/.x1;x2;x3/ D 0 if xi ¤ xj :

Moreover GQ has the following behaviour when jxi � xj j ! 0

.GQ/.X / D Qij .rij ;xk/

jxi � xj j � .�Q/ij .rij ;xk/C o.1/ (12)

where

.�Q/ij .rij ;xk/ D 1

.2�/3

ˆ

ds dt ei.rij �sCxk �t/
r

�ij

miCmj
s2C�ij

mk
t2 yQij .s; t/

� 1

.2�/5

ˆ

dP
eirij .pi Cpj /Cixk �pk

Hf .P/

h yQik.pi C pk ;pj /

�ik

C
yQjk.pj C pk ;pi /

�jk

i
:

(13)

Proceeding in analogy with the one-body case we decompose the generic element
‰ in D.H˛/ as

‰ D uCGQ (14)
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where u is a smooth function. Then the boundary condition (4), using (12), can be
rewritten as

u.X /jxi Dxj
D .�Q/ij .rij ;xk/C ˛ijQij .rij ;xk/: (15)

Using the decomposition (14), we obtain the explicit expression of the quadratic form
E˛ associated to the operator H˛:We set

D" D ¹X 2 R
9 j jxi � xj j > " for all i; j º:

Then taking into account (6) and (11) and the boundary condition (15) we have

E˛.‰/ D .‰;H˛‰/

D lim
"!0

ˆ

D"

dX ‰.X /.Hf‰/.X /

D .u;Hf u/C lim
"!0

ˆ

D"

dX GQ.X / .Hf u/.X /

D .u;Hf u/C
X

i�j

2�

�ij

�
˛ijkQijk2

C
ˆ

drij dxkQij .rij ;xk/.�Q/ij .rij ;xk/

�

D .u;Hf u/C
X

i�j

2�

�ij

�
˛ijkQijk2

C
ˆ

ds dt j yQij .s; t/j2
r

�ij

miCmj s
2 C �ij

mk
t2

� 1

.2�/2�jk
2Re
ˆ

dP
yQij .pi C pj ;pk/ yQjk.pj C pk ;pi /

Hf .P/

�
;

where in the last equality we have used the de�nition of �Q given in (13). For later
use, it is convenient to rewrite in a different form the last two integrals in the above
formula. Let us introduce the change of variables

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

p D p1 C p2 C p3;

k1 D mj Cmk

M
pi � mi

M
pj � mi

M
pk ;

k2 D mi Cmj

M
pk � mk

M
pi � mk

M
pj :

(16)
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Then de�ning

O�ij .k;p/ D yQij

�mi Cmj

M
p � k;

mk

M
p C k

�

we have
ˆ

dP
yQij .piCpj ;pk/ yQjk.pj Cpk;pi /

Hf .P/

D
ˆ

dp dk1 dk2
O�ij .k2;p/ O�jk.k1;p/

k21
2�ij

C k22
2�jk

C k1 � k2

mj
C p2

2M

:

Moreover, de�ning the variables

p D t C s; k D mi Cmj

M
t � mk

M
s;

we also have
ˆ

ds dt j yQij .s; t/j2
r

�ij

mi Cmj
s2 C �ij

mk
t2

D
ˆ

dp dk j O�ij .k;p/j2
s

�ijM

mk.mi Cmj /
k2 C �ij

M
p2:

Noticing that kQijk D kO�ijk, we obtain the following equivalent expression for E˛

E˛.‰/ D .u;Hf u/

C
X

i�j

2�

�ij

"
˛ijkO�ijk2

Cp
2�ij

ˆ

dp dk j O�ij .k;p/j2
s

Mk2

2mk.mi Cmj /
C p2

2M

� 1

.2�/2�jk
2Re
ˆ

dp dk1 dk2
O�ij .k2;p/ O�jk.k1;p/

k21
2�ij

C k22
2�jk

C 1

mj
k1 � k2 C p2

2M

#
:

(17)

We de�ne the form domain as follows (see Remark 2.1 at the end of this section)

D.E˛/ D ¹‰ 2 L2.R9/ j ‰ D uC Gp�; jruj 2 L2.R9/;
� D ¹�ij º; �ij 2 H 1=2.R6/º; (18)
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where
Gp� D

X

i�j
Gp�ij

is given by

.GQij /.X / D .Gp�ij /.xi � xj ;xk � xj ;xcm/; xcm D m1x1 Cm2x2 Cm3x3

M
:

In particular

.1Gp�ij /.kij ;kkj ;p/ D 1p
2��ij

O�ij .kkj ;p/
k2ij

2�ij
C

k2
kj

2�jk
C kij � kkj

mj
C p2

2M

;

where with kij ;kkj we denote the conjugate variables to xi � xj and xk � xj
respectively.

We remark that the dependence on the variable p (the total momentum) in the last
two integrals in (17) is essentially irrelevant. This fact can be seen by introducing a
different decomposition for the elements ofD.E˛/. More precisely, we de�ne

G� D
X

i�j
G�ij ;

where

.bG�ij /.kij ;kkj ;p/ D 1p
2��ij

O�ij .kkj ;p/
k2ij

2�ij
C

k2
kj

2�jk
C kij � kkj

mj

;

and we set
‰ D uC Gp� D v C G�; ‰ 2 D.E˛/:

By a direct computation we �nd

E˛.‰/ D .‰; hcm‰/C .v; hf v/

C
X

i�j

2�

�ij

"
˛ij kO�ijk2 Cp

2�ij

ˆ

dp dk j O�ij .k;p/j2
s

Mk2

2mk.mi Cmj /

� 1

.2�/2�jk
2Re
ˆ

dp dk1 dk2
O�ij .k2;p/ O�jk.k1;p/

k21
2�ij

C k22
2�jk

C 1

mj
k1 � k2

#
;

(19)
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where

hcm D p2

2M
; hf D Hf � hcm:

From (19) it is clear that the dependence on the variable p is only parametric and
therefore irrelevant. In particular, for factorized wave function ‰ D f �  , where
f is a function of the center of mass coordinate and  is a function of the relative
coordinates, we obtain

E˛.‰/ D k k2.f; hcmf /C kf k2F˛. /;

where

D.F˛/ D ¹ 2 L2.R6/ j  D w C G�; jrwj 2 L2.R6/;
� D ¹�ij º; �ij 2 H 1=2.R3/º; (20)

F˛. / D .w; hfw/C
X

i�j

2�

�ij

"
˛ij k O�ijk2

Cp
2�ij

ˆ

dk j O�ij .k/j2
s

Mk2

2mk.mi Cmj /

� 1

.2�/2�jk
2Re
ˆ

dk1 dk2
O�ij .k2/ O�jk.k1/

k21
2�ij

C k22
2�jk

C 1

mj
k1 � k2

#
:

(21)

This means that, choosing the center of mass reference frame, one can reduce the
analysis to the quadratic form F˛.

We underline that the above construction procedure has the only aim to get (17)
and (18) or, if one chooses the center of mass reference frame, (20) and (21). Such
de�nitions are our starting point for the rigorous construction of the Hamiltonian of
the three particle system under suitable symmetry constraints.

Remark 2.1. We note that in (18) the choice of the charges �ij 2 H
1=2.R6/ (or

in (20) the choice �ij 2 H
1=2.R3/) guarantees that all terms in the square brackets

of (17) (or (21)) are �nite. However, it is not a priori clear for which class of charges
the sum of the last two terms in the square brackets is �nite. Therefore our choice
has some degree of arbitrariness and in fact, in some relevant cases, a larger class of
charges must be considered ([9]).
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3 Three bosons for non zero angular momentum

For a system of three identical bosons of unitary masses, considered in the center of
mass reference frame, the Hilbert space of states is L2s .R

6/, i.e., the space of square-
integrable functions symmetric under the exchange of particle coordinates. In the
Fourier space, we �x a pair of coordinates k1,k2 de�ned in (16) (with p D 0), e.g.,
k1 D p1;k2 D p3 and then p2 D �k1 � k2, so that the symmetry condition reads
y .k1;k2/ D y .k2;k1/ D y .k1;�k1 � k2/.

Moreover the symmetry condition implies that ˛ij D ˛ for all i � j and,
from (4), that Q12 D Q23 D Q31 and hence �12 D �23 D �31 D �: Then we
have the following expression for the potential

.cG�/.k1;k2/ D 2p
2�

O�.k1/C O�.k2/C O�.�k1 � k2/

k21 C k22 C k1 � k2
:

With an abuse of notation we de�ne the quadratic form associated to the STM
operator in the bosonic case as

D.F˛/ D ¹ 2 L2s .R6/ j  D w C G�; jrwj 2 L2s .R6/; � 2 H 1=2.R3/º; (22)

and

F˛. / D .w; hfw/C 12

�
ˆ˛.�/; (23)

where the form ˆ˛ acting on the charge � 2 D.ˆ˛/ D H
1=2.R3/ is given by

ˆ˛.�/ D ˆdiag. O�/Cˆoff. O�/C ˛

ˆ

dk j O�.k/j2 (24)

and the diagonal part and the off-diagonal part are de�ned respectively by

ˆdiag.f / D
p
3�2

2

ˆ

dk kjf .k/j2; (25)

ˆoff.f / D �
ˆ

dk1 dk2
f .k1/f .k2/

k21 C k22 C k1 � k2
: (26)

It easy to see that if one can �nd an f0 such that ˆdiag.f0/Cˆoff.f0/ < 0 then, by a
scaling argument, one shows that the form (23) is unbounded from below. As amatter
of fact, such f0 can be explicitly constructed and it is rotationally invariant (for the
proof one can follows the line of [13], Section 4). This fact is not surprising since it
is known that the STM operator is not self-adjoint and all its self-adjoint extensions
are unbounded from below, showing the occurrence of the Thomas effect (see [12]).
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Following [17], we de�ne

H0 D ¹ 2 L2s .R6/ j y D y .jk1j; jk2j/º;
which is an invariant subspace for the STM operator, and we consider its orthogonal
complement H?

0 . In the next theorem we characterize our quadratic form in H?
0 .

Theorem 3.1. The quadratic form (22)–(26) restricted to the subspaceH?
0 is bounded

from below and closed for any ˛ 2 R.

We start with some preliminaries, following the line of [8]. Given f 2 L2.R3/,
we consider the expansion

f .k/ D
1X

lD0

lX

nD�l
fln.k/Y

n
l .�; '/;

where Y n
l
is the the spherical harmonic of order l; n: Using the above expansion one

can obtain the following decompositions for ˆoff and ˆdiag (see [8], Lemma 3.1)

ˆdiag.f / D
C1X

lD0

lX

nD�l
F diag.fln/; (27)

ˆoff.f / D
C1X

lD0

lX

nD�l
F off
l .fln/; (28)

with F diag and F off
l

acting as

F diag.g/ D
p
3�2

2

ˆ C1

0

dk k3 jg.k/j2;

F off
l .g/ D �2�

ˆ C1

0

dk1

ˆ C1

0

dk2 k21 g.k1/k
2
2 g.k2/

ˆ 1

�1
dy

Pl .y/

k21 C k22 C k1k2y
;

where Pl denotes the Legendre polynomial of order l: Proceeding as in Lemma 3.2
of [8], one proves that

F off
l .g/ � 0; for l odd, (29)

F off
l .g/ � 0; for l even. (30)

Moreover F off
l

can be diagonalized. Setting

g].k/ D 1p
2�

ˆ

dx e�ikxe2xg.ex/;
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we have (for details see [8], Lemma 3.3)

F diag.g/ D
p
3 �2

2

ˆ

dk jg].k/j2; (31)

F off
l .g/ D �

ˆ

dk Sl .k/jg].k/j2; (32)

where

Sl.k/ D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

�2
ˆ 1

�1
dy Pl.y/

cosh.k arcsin y=2/

cos.arcsin y=2/ cosh.k �=2/
for l even,

��2
ˆ 1

�1
dy Pl.y/

sinh.k arcsin y=2/

cos.arcsin y=2/ sinh.k �=2/
for l odd.

Therefore the comparison between F off
l

and F diag is reduced to the study of Sl .k/:
We �rst notice that Sl .k/ as a function of l (and for any �xed k) is decreasing for l
even and increasing for l odd (see Lemma 3.5 in [8]). For the estimate, we distinguish
the cases of even and odd l .

Lemma 3.2. For l even and any k 2 R

0 � Sl.k/ � �2
�50
27
� � 10

3

p
3C

p
11

9
� 10

9
t0

�
; l ¤ 0; (33)

where t0 D arcsin.1=
p
12 / ' 0:293 and

0 � S0.k/ � 4�2: (34)

Furthermore, for l odd and any k 2 R

�2
�4
3

p
3 � 8

�

�
� Sl.k/ � 0:

Proof. Let us consider the case l ¤ 0 and even. The positivity of Sl.k/ follows
from (30) and (32). Since Sl .k/ is decreasing in l , we have Sl.k/ � S2.k/, where
S2.k/ is an even function. An explicit integration gives

S2.0/ D �2
ˆ 1

�1
dy .3y2 � 1/ 1

2 cos.arcsin y=2/

D �2
ˆ �=6

��=6

dx .12 sin2 x � 1/

D �2
�5
3
� � 3

p
3
�
:



84 G. Basti and A. Teta

Let us estimate the difference S2.0/ � S2.k/ for any positive k:We have

S2.0/ � S2.k/ D �2
ˆ 1

�1
dy

3y2 � 1
2 cos.arcsin y=2/

�
1 � cosh.k arcsin y=2/

cosh.k �=2/

�

D 2�2I.k/;

where

I.k/ D
ˆ �=6

0

dt .12 sin2 t � 1/
�
1 � cosh.kt/

cosh.k �=2/

�
:

Since s.t/ D 12 sin2 t � 1 is negative if t < t0 and positive otherwise we can write

I.k/ D �
ˆ t0

0

dt js.t/j C
ˆ �=6

t0

dt s.t /

C 1

cosh.k �=2/

�
ˆ t0

0

dt js.t/j cosh.kt/�
ˆ �=6

t0

dt s.t / cosh.kt/

�

� 1

cosh.k �=2/

h
.b � a/ cosh

�
k
�

2

�
C a � b cosh

�
k
�

6

�i
;

(35)

where

a D
ˆ t0

0

dt js.t/j and b D
ˆ �=6

t0

dt s.t /; with b � a > 0.

Denoting

g.k/ D a C
�10
9
b � a

�
cosh

�
k
�

2

�
� b cosh

�
k
�

6

�
;

we can rewrite (35) as

I.k/ � g.k/

cosh.k �=2/
� b

9
:

Let us show that g.k/ � 0:We have

g0.k/ D �

2

�10
9
b � a

�
sinh

�
k
�

2

�h
1� A

3 sinh.k �=6/

sinh.k �=2/

i
(36)

where

A D b

10b � 9a :
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The term in square bracket in (36) is positive, then g0.k/ � 0 which, together with
g.0/ D b=9, implies g.k/ � 0: Thus we �nd

S2.0/ � S2.k/ � �2�
2

9
b:

Inserting the explicit expression for b, we obtain the estimate (33).
In the case l D 0 the estimate (34) is straightforward.

Let us consider the case l odd. From (29) and (32) it follows that Sl.k/ � 0.
Noticing thatSl.k/ is an even function and it is increasing in l , we haveSl.k/�S1.k/.

Since S1.0/ D �2.4=3
p
3 � 8=�/ < 0; limk!1 S1.k/ D 0 and S 0

1.k/ ¤ 0 for
k > 0 we obtain the thesis.

The following estimate, which is the main tool in the proof of Theorem 3.1, is a
direct consequence of the above lemma.

Proposition 3.3. Let f 2D.ˆ˛/ such that f .k/ D PC1
lD1

Pl
nD�l fln.k/Y nl .�; �/.

Then
�� ˆdiag.f / � ˆoff.f / � ƒˆdiag.f /

where

� D 100

27
p
3
� � 20

3
C 2

p
11

9
p
3

� 20

9
p
3
t0 ' 0:101; ƒ D �8

3
C 16p

3 �
' 0:274:

Proof. Using (28), (29), (32), (33), (31), and (27), we have

ˆoff.f / D
C1X

lD1

lX

nD�l
F off
l .fln/

�
C1X

lD2
l even

lX

nD�l
F off
l .fln/

D �
C1X

lD2
l even

lX

nD�l

ˆ

dk Sl.k/ jf ]
ln
.k/j2

� ��
C1X

lD2
l even

lX

nD�l

p
3 �2

2

ˆ

dk jf ]
ln
.k/j2

� �� ˆdiag.f /

and analogously one also proves the estimate ˆoff.f / � ƒˆdiag.f /.
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Proof of Theorem 3.1. We �rst consider the simpler case ˛ > 0. From the de�ni-
tion (23) and Proposition 3.3 we obtain the positivity of F˛ ,

F˛. / D .w; hfw/C 12

�
ˆ˛.�/

� 12

�

�
ˆoff. O�/Cˆdiag. O�/C ˛

ˆ

dk j O�.k/j2
�

� 12

�

�
.1� �/ˆdiag. O�/C ˛

ˆ

dk j O�.k/j2
�

� 0:

Let us prove the closure of F˛: Let ¹ nº D ¹wn C G�nº be a sequence inD.F˛/
such that  n !  2 L2s .R6/ and F˛. n �  m/ ! 0:

From F˛. n �  m/ ! 0; the positivity of hf and the lower bound for ˆ˛ it
follows
ˆ

dk1 dk2 .k
2
1 C k22/j. ywn � ywm/.k1;k2/j2 �! 0; k�n � �mk

H1=2 �! 0:

Thus there exist v 2 L2s .R6/ and � 2 H 1=2.R3/ such that

ˆ

dk
ˇ̌p
k21 C k22 wn.k1;k2/ � v.k1;k2/

ˇ̌2 �! 0; k�n � �k
H1=2 �! 0:

De�ning

yw D Ovp
k21 C k22

;

for any " > 0 we have

ˆ

R
6
"

dk1 dk2 j. ywn � yw/.k1;k2/j2 �! 0; (37)

ˆ

R
6
"

j.cG�n �cG�/.k1;k2/j2 �! 0: (38)

where Rd" D ¹x 2 Rd j x � "º: From (37) and (38) in particular we obtain

 D w C G� 2 D.F˛/

and also F˛. n �  / ! 0: This concludes the proof in the case ˛ > 0:
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In order to study the case ˛ � 0 it is convenient to consider the following decom-
position for the generic  in the domain of F˛:

 D w� C G��

where � > 0 and

G��.k1;k2/ D 2p
2�

O�.k1/C O�.k2/C O�.�k1 � k2/

k21 C k22 C k1 � k2 C �
:

Thus G�� belongs toL2s .R
6/ andw� is inH 1.R6/:Moreover the quadratic form can

be rewritten as

F˛. / D .w�; hfw
�/C �kw�k2 � �k k2 C 12

�
ˆ�˛.�/;

where

ˆ�˛.�/ D
�
ˆ

diag
�
. O�/Cˆoff

� .
O�/C ˛

ˆ

dk j O�.k/j2
�

and

ˆ
diag
�
.f / D �2

ˆ

dk jf .k/j2
r
3

4
k2 C �;

ˆoff
� .f / D �

ˆ

dk1 dk2
f .k1/f .k2/

k21 C k22 C k1 � k2 C �
:

Proceeding as in the case � D 0 (see [8]), one has

�� ˆdiag
�

� ˆoff
� � ƒˆ

diag
�

Therefore the quadratic form is bounded from below

F˛. / � � ˛2

�4.1� �/2
k k2:

The proof that F˛ is closed follows exactly the same line of the proof of Theorem 2.1
in [8] and it is omitted for the sake of brevity.

We conclude observing that Theorem 3.1 implies the existence of a self-adjoint
operator H ?̨

;0 in H?
0 which, at least formally, coincides with the STM operator

restricted to H?
0 . Such operator H ?̨

;0 is positive for ˛ � 0 and bounded from below
by

� ˛2

.�4.1 � �/2/
for ˛ < 0.
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4 System of fermions

In a system of identical fermions the wave function, due to the antisymmetry under
exchange of coordinates, vanishes at the coincident points of any pair of particles and
therefore the zero-range interaction is ineffective. On the other hand, in physical ap-
plications it is relevant in the case of a mixture ofN identical fermions of one species
andM identical fermions of another species. Here the dynamics is non trivial since
each fermion of one species feels the zero-range interaction with all the fermions
of the other species. In particular, numerical simulations seem to suggest (see [15])
that the system is stable at least for mass ratio equal to one but, in this generality,
no rigorous result is available (see [13] for a formulation of the problem in terms of
quadratic forms). A signi�cant aspect of the fermionic problem is that the stability
of the system depends on the value of the mass ratio. This has been explicitly shown
in the case of N � 2 identical fermions of mass one plus a different particle of mass
m. More precisely one de�nes

ƒ.m;N/ D 2��1.N � 1/.mC 1/2
h 1p

m.mC 2/
� arcsin

� 1

mC 1

�i
:

For each �xed N , the function ƒ.�; N / is positive, decreasing and satis�es the
conditions limm!0ƒ.m;N/ D 1, limm!1ƒ.m;N/ D 0. Therefore, for each N
the equation ƒ.m;N/ D 1 admits exactly one solution m�.N / > 0, increasing with
N and such that m > m�.N / if and only if ƒ.m;N/ < 1. Furthermore, following
the strategy outlined in Section 2, we consider the STM operator for this fermionic
case and construct the associated quadratic form, still denoted by F˛ . In [8] it is
proved the following result.

Theorem 4.1. 1. Stability. If m > m�.N / then F˛ is closed and bounded from
below. In particular F˛ is positive for ˛ � 0 and bounded from below by

� ˛2

4�4.1�ƒ.m;N//2

for ˛ < 0. Therefore the corresponding STMoperatorH˛ is self-adjoint and bounded
from below, with the same lower bound.

2. Instability. Ifm < m�.2/ thenF˛ is unbounded from below for any˛ 2 R.

The above theorem provides an optimal result in the case N D 2, i.e., stability
for m > m�.2/ and instability for m < m�.2/, where m�.2/ ' 0:0735, in agree-
ment with previous heuristic results in the physical literature ([4]) and also with other
mathematical results ([21] and [20]). On the other hand, in the case N > 2 we get
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only a partial result since no information is given form 2 .m�.2/; m�.N // and, in or-
der to �ll this gap, a more careful analysis of the role of the antisymmetry is required
(for other results in this direction we refer to [5] and [19]).

The special case N D 2 in the unitary limit, i.e., for ˛ D 0, exhibits a further
interesting behavior that we want to discuss in the rest of this section. In the center of
mass reference frame we choose relative coordinates y1 D x1 � x0, y2 D x2 � x0,
where x1;x2 are the coordinates of the fermions and x0 denotes the coordinate of
the other particle. Let L2a.R

6/ be the Hilbert space of states, i.e., the space of square
integrable functions anisymmetric under the exchange of coordinates. Moreover we
have �12 D 0 and the antisymmetry condition implies �20 D ��10 WD ��. Then the
potential in the Fourier space takes the form

.cG�/.k1;k2/ D 2p
2�

O�.k1/ � O�.k2/
k21 C k22 C 2

mC 1
k1 � k2

and the quadratic form associated to the STM operator is

D.F0/ D ¹ 2 L2a.R6/ j  D w C G�; jrwj 2 L2a.R6/; � 2 H 1=2.R3/º;

F0. / D .w; hfw/C 2.mC 1/

�m
ˆ0.�/;

where

ˆ0.�/ D ˆdiag. O�/Cˆoff. O�/;

ˆdiag.f / D 2�2
p
m.mC 2/

mC 1

ˆ

dk kjf .k/j2;

ˆoff.f / D
ˆ

dk1 dk2
f .k1/f .k2/

k21 C k22 C 2

mC 1
k1 � k2

: (39)

From Theorem 4.1 we know that the form is closed and bounded from below for
m > m� and unbounded from below for m < m� (here we have used the shorthand
notation m� D m�.2/). We also notice the main differences with respect to the form
in the bosonic case, i.e., the dependence on m and, more important, the sign C in
front of the integral in (39). This implies that for the estimate of ˆoff.f / one has
to study the terms for l odd, and in particular the case l D 1, in the expansion in
spherical harmonics of f .
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As a matter of fact, for suitable values of the mass m the above quadratic form
can be modi�ed by enlarging the class of admissible charges and the new quadratic
form turns out to be closed and bounded from below. Therefore it de�nes a Hamilto-
nian, different from H˛, describing an additional three-body interaction besides the
standard two-body zero-range interaction (see [9] for details).

In order to explain the above assertion, we proceed formally. Let us de�ne

O��
n .k/ D 1

k2�s Y
n
1 .�; �/; 0 < s < 1; n D 0;˙1: (40)

Notice that ��
n … L2.R3/ but this fact is not relevant since for ˛ D 0 the condition

ˆ0.�/ < 1 does not require square-integrability of �. The crucial point is that both
ˆdiag. O��

n / andˆ
off. O��

n / diverge, due to the behavior of O��
n .k/ for large k and the two

in�nities can compensate for an appropriate value of the mass. Indeed, by a direct
computation one �nds

ˆ0.�
�
n / D 2�

�
�
p
m.mC 2/

mC 1
C
ˆ 1

�1
dt t
ˆ 1

0

dq
qs

q2 C 1C 2

mC 1
tq

�
ˆ 1

0

dk
1

k1�2s

WD g.m; s/

ˆ 1

0

dk
1

k1�2s D 1 unless g.m; s/ D 0:

The problem is then reduced to the study of the equation g.m; s/ D 0. One can show
that for s 2 Œ0; 1� there is a unique solution m.s/, monotonically increasing, with
m.0/ D m� andm.1/ WD m�� ' 0:116. Form 2 .m�; m��/ we can therefore de�ne
the inverse function s.m/, with 0 < s.m/ < 1, which satis�es g.m; s.m// D 0. This
means that for eachm 2 .m�; m��/ the charge (40) with s D s.m/ can be considered
to enlarge the class of admissible charges and to construct a more general quadratic
form. Starting from the above argument, one can prove the following result.

Theorem 4.2. For any m 2 .m�; m��/ and ˇ WD ¹ˇnº, n D 0;˙1, the quadratic
form in L2a.R

6/

D.F0;ˇ / D
°
 2 L2a.R6/

ˇ̌
ˇ  D w C G�; jrwj 2 L2a.R6/; � 2 H�1=2.R3/;

� D � C
1X

nD�1
qn�

�
n ; ˆ

diag. O�/ < 1; qn 2 C

±
;

F0;ˇ . / D .w; hfw/C 2.mC 1/

�m
ˆ0.�/C

1X

nD�1
ˇnjqnj2

is closed and bounded from below. Then it uniquely de�nes a self-adjoint and bounded
from below Hamiltonian H0;ˇ ,D.H0;ˇ/.
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We conclude with some comments.

i) At heuristic level, the Hamiltonian H0;ˇ has been introduced and studied in
the physical literature (see, e.g., [23]). From the mathematical point of view, an
analogous result has been found in [20] using an appoach based on the theory of
self-adjoint extensions. Nevertheless, in [20] the analysis is done for ˛ ¤ 0, which
requires charges in L2. Therefore the parameter s in (40) is chosen in the interval
.0; 1=2/ and for this reason the new Hamiltonian is constructed only for a smaller
range of mass, i.e., for m 2 .m�; m��

Minlos/, with m
��
Minlos D m.s/jsD1=2 < m

��.

ii) The quadratic form F0;ˇ constructed in Theorem 4.2 generalizes the previous
one F0 in the sense that limˇ!1 F0;ˇ D F0.

iii) A �nal, and more important, comment concerns the boundary condition sat-
is�ed by an element of D.H0;ˇ /. Denoting R D

p
y21 C y22 and choosing for sim-

plicity ��
˙1 D 0, for R ! 0 one �nds

 .y1;y2/ D q0

R2Cs.m/ C �.m/ˇ0q0

R2�s.m/ C o.Rs.m/�2/

where �.m/ is a given positive function of m. In analogy with the case of a point
interaction (see (2)), such boundary condition describes an interaction supported in
y1 D y2 D 0, i.e., when the positions of all the three particles coincide. Therefore
the new HamiltonianH0;ˇ describes the two-body (resonant) zero-range interactions
plus an effective three-body point interactions.
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have led him to nearly every corner of this globe.

Happy Birthday, Pavel, we hope our modest contribution

to operator and spectral theory will cause some joy.

1 Introduction

The purpose of this paper is fourfold:

• �rst, to recall recent results on factorizations of analytic operator-valued Fred-
holm functions following Howland [18] and more recently, [11];

• second, apply this to algebraic multiplicities of bounded, analytic operator-
valued Fredholm functions;

• third, discuss the notion of an index of meromorphic operator-valued functions;

• fourth, apply this to Birman–Schwinger operators in connection with abstract
perturbation theory and to operator-valued Weyl–Titchmarsh functions associ-
ated to closed extensions of dual pairs of closed operators.

In Section 2, we recall the notion of �nitely-meromorphic B.H/-valued functions
and some of their basic properties, state the analytic Fredholm theorem, and recall in
Theorems 2.5 and 2.6 a factorization of analytic operator-valued Fredholm functions
originally due to Howland [18] and recently revisited under somewhat more general
hypotheses in [11].
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Section 3 recalls the notion of zeros of �nite-type of bounded, analytic operator-
valued functions A.�/, revisits the algebraic multiplicity (8) of a zero of �nite-type
of A.�/, relates the latter to the operator-valued argument principle (i.e., an opera-
tor Rouché-type theorem) and to appropriate traces of contour integrals, and �nally
proves equality of this notion ofmultiplicity with themultiplicity notion (5) originally
introduced by Howland [18] in Theorem 3.3, the principal result of this section.

The topic of meromorphic operator-valued functions and the notion of their index
is the principal subject of Section 4. In particular, we revisit the notion of B.H/-val-
ued �nitely meromorphic functions M.�/, introduce the notion of their index via
the operator-valued argument principle and taking the trace of a contour integral as
in (19), and �nally recall the meromorphic Fredholm theorem.

Abstract perturbation theory and applications to Birman–Schwinger-type opera-
torsK.�/ are treated in Section 5. This should be viewed as a re�nement of recent re-
sults of this genre in Section 5 in [11]. Following Kato [19], Konno and Kuroda [23],
and Howland [17], we recall a class of factorable non-self-adjoint perturbations of
a given unperturbed non-self-adjoint operator H0, giving rise to an operator H as
re�ned in [12] (cf. Theorem 5.2), and then prove analogs of Weinstein–Aronszajn
formulas, relating the difference of the algebraic multiplicity of an eigenvalue of H
andH0 to the index of the meromorphic operator-valued function I �K.�/ in Theo-
rem 5.5.

Finally, Section 6 focuses on closed extensions A0, A‚ (where ‚ is an appro-
priate bounded operator parameter), associated to dual pairs ¹A;Bº of operators
and their associated Weyl–Titchmarsh functionsM.�/, following work of Malamud,
Mogilevskii, and Hassi [26], [27], and [28]. Our principal new result, Theorem 6.4,
relates the difference of the algebraic multiplicity of a discrete eigenvalue of A‚ and
A0 to the index of the meromorphic operator-valued function ‚ �M.�/.

Next, we summarize the basic notation used in this paper: Let H and K be sep-
arable complex Hilbert spaces, . � ; � /H and . � ; � /K the scalar products in H and K

(linear in the second factor), and IH and IK the identity operators in H and K, re-
spectively. Next, let T be a closed linear operator from dom.T / � H to ran.T / � K,
with dom.T / and ran.T / denoting the domain and range of T . The closure of a clos-
able operator S is denoted by xS . The kernel (null space) of T is denoted by ker.T /.
The spectrum, point spectrum, and resolvent set of a closed linear operator inH will
be denoted by �.�/, �p.�/, and �.�/; the discrete spectrum of T (i.e., points in �p.T /
which are isolated from the rest of �.T /, and which are eigenvalues of T of �nite al-
gebraic multiplicity) is abbreviated by �d .T /. The algebraic multiplicity ma.z0I T /
of an eigenvalue z0 2 �d .T / is the dimension of the range of the corresponding Riesz
projection P.z0I T /,

ma.z0I T / D dim.ran.P.z0I T /// D trH.P.z0I T //;
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where (with the symbol
œ
denoting contour integrals)

P.z0I T / D �1
2�i

�

C.z0I"/
d� .T � �IH/�1;

for 0 < " < "0 and D.z0I "0/n¹z0º � �.T /; here D.z0I r0/ � C is the open disk
with center z0 and radius r0 > 0, and C.z0I r0/ D @D.z0I r0/ the corresponding
circle. The geometric multiplicity mg .z0I T / of an eigenvalue z0 2 �p.T / is de�ned
by

mg .z0I T / D dim.ker..T � z0IH///:

The essential spectrum of T is de�ned by �ess.T / D �.T /n�d .T /.
The Banach spaces of bounded and compact linear operators in H are denoted

by B.H/ and B1.H/, respectively. Similarly, the Schatten–von Neumann (trace)
ideals will subsequently be denoted by Bp.H/, p 2 Œ1;1/, and the subspace of all
�nite rank operators in B1.H/ will be abbreviated by F.H/. Analogous notation
B.H1;H2/, B1.H1;H2/, etc., will be used for bounded, compact, etc., operators
between two Hilbert spaces H1 and H2. In addition, trH.T / denotes the trace of a
trace class operator T 2 B1.H/.

The set of bounded Fredholm operators onH (i.e., the set of operators T 2 B.H/

such that dim.ker.T // < 1, ran.T / is closed in H, and dim.ker.T �// < 1) is
denoted by the symbol ˆ.H/. The corresponding (Fredholm) index of T 2 ˆ.H/ is
then given by ind.T / D dim.ker.T // � dim.ker.T �//. For a linear operator S in H

with closed range one de�nes the defect of S , denoted by def.S/, by the codimension
of ran.S/ in H, that is,

def.S/ D dim.ran.S/?/:

The symbol u denotes a direct (but not necessary orthogonal direct) decomposi-
tion in connection with subspaces of Banach spaces. Finally, we �nd it convenient to
abbreviate N0 D N [ ¹0º.

2 On factorizations of analytic operator-valued functions

In this section, we recall factorizations of bounded, analytic operator-valued Fred-
holm functions following Howland [18] and more recently [11].

Assuming � � C to be open andM.�/ to be a B.H/-valued meromorphic func-
tion on � that has the norm convergent Laurent expansion around z0 2 � of the
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type

M.z/ D
1X

kD�N0

.z � z0/kMk.z0/; Mk.z0/ 2 B.H/; k 2 Z; k � �N0;
0 < jz � z0j < "0;

for someN0 D N0.z0/ 2 N and some 0 < "0 D "0.z0/ suf�ciently small, we denote
the principal part, ppz0

¹M.�/º, ofM.�/ at z0 by

ppz0
¹M.z/º D

�1X

kD�N0

.z � z0/kMk.z0/; Mk.z0/ 2 B.H/; �N0 � k � �1;
0 < jz � z0j < "0:

(1)

Given the notation (1), we start with the following de�nition.

De�nition 2.1. Let� � C be open and connected. Suppose thatM.�/ is aB.H/-val-
ued analytic function on � except for isolated singularities in a neighborhood of
which it is meromorphic. ThenM.�/ is called �nitely meromorphic at z0 2 � ifM.�/
is analytic on the punctured diskD.z0I "0/n¹z0º � � centered at z0 with suf�ciently
small "0 > 0, and the principal part ofM.�/ at z0 is of �nite rank, that is, the principal
part ofM.�/ is of the type (1), and one has

Mk.z0/ 2 F.H/; �N0 � k � �1:
In addition,M.�/ is called �nitely meromorphic on � if it is meromorphic on � and
�nitely meromorphic at each of its poles.

In this context, we mention the following useful result.

Lemma 2.2 (Lemma XI.9.3 in [13] and Proposition 4.2.2 in [15]). Let � � C be
open and connected and Mj .�/, j D 1; 2, be B.H/-valued �nitely meromorphic
functions at z0 2 �. ThenM1.�/M2.�/ andM2.�/M1.�/ are �nitely meromorphic at
z0 2 �, and for 0 < " < "0 suf�ciently small,

�

C.z0I"/
d� M1.�/M2.�/ 2 F.H/

and �

C.z0I"/
d� M2.�/M1.�/ 2 F.H/;

and the identity

trH

��

C.z0I"/
d� M1.�/M2.�/

�
D trH

��

C.z0I"/
d� M2.�/M1.�/

�
(2)
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holds. Moreover, for 0 < jz � z0j < "0 one has
trH.ppz0

¹M1.z/M2.z/º/ D trH.ppz0
¹M2.z/M1.z/º/:

For the remainder of this section we make the following assumptions:

Hypothesis 2.3. Let � � C be open and connected, suppose that AW� ! B.H/ is
analytic and that

A.z/ 2 ˆ.H/ for all z 2 �:

One then recalls the analytic Fredholm theorem in the following form.

Theorem 2.4 (Section 4.1 of [15], [16], [17], Theorem VI.14 in [32], and [40]).
Assume that AW� ! B.H/ satis�es Hypothesis 2.3. Then either

(i) A.z/ is not boundedly invertible for any z 2 �,
or else,

(ii) A.�/�1 is �nitely meromorphic on �. More precisely, there exists a discrete
subset D1 � � .possibly, D1 D ;/ such that A.z/�1 2 B.H/ .and hence lies
in ˆ.H// for all z 2 �nD1, A.�/�1 is analytic on �nD1, meromorphic on �,
and if z1 2 D1 then

A.z/�1 D
1X

kD�N0

.z � z1/kCk.z1/; 0 < jz � z1j < "0;

for some N0 D N0.z1/ 2 N and some 0 < "0 D "0.z1/ suf�ciently small, with

Ck.z1/ 2 F.H/; �N0 � k � �1;
Ck.z1/ 2 B.H/; k 2 N0:

In addition,
C0.z1/ 2 ˆ.H/:

Finally, if ŒIH � A.z/� 2 B1.H/ for all z 2 �, then
ŒIH � A.z/�1� 2 B1.H/; z 2 �nD1;

ŒIH � C0.z1/� 2 B1.H/; z1 2 D1:

The following fundamental results are due toHowland [18] (see also [11] formore
general hypotheses, replacing Howland’s assumption that ŒA.�/� IH� 2 B1.H/ by
the assumption that A.�/ is Fredholm):
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Theorem 2.5 ([18]). Assume that AW� ! B.H/ satis�es Hypothesis 2.3, suppose
that A.z/ is boundedly invertible for some z 2 � .i.e., case (ii) in Theorem 2.4
applies/, and let z0 2 � be a pole of A.�/�1 of order n0 2 N. Denote by Q1 any
projection onto ran.A.z0// and let P1 D IH �Q1. Then,

A.z/ D ŒQ1 � .z � z0/P1�A1.z/; z 2 �; (3)

where

• A1.�/ is analytic on �,
• A1.z/ 2 ˆ.H/; z 2 �,
• ind.A.z// D ind.A1.z// D 0, z 2 �, jz � z0j suf�ciently small,
• def.A1.z0// � def.A.z0//,

• z0 is a pole of A1.�/�1 of order n0 � 1.
In particular, A1W� ! B.H/ satis�es Hypothesis 2.3. Finally,

ŒIH � A.�/� 2 F.H/ () ŒIH � A1.�/� 2 F.H/

and

ŒIH � A.�/� 2 Bp.H/ () ŒIH � A1.�/� 2 Bp.H/ for some 1 � p � 1:

Assume that AW� ! B.H/ satis�es Hypothesis 2.3 and that A.�/�1 has a pole
at z0 2 �. The Riesz projection P.z/ associated with A.z/ and z in a suf�ciently
small neighborhood N.z0/ � � of z0 is de�ned by

P.z/ D �1
2�i

�

C.0I"/
d� .A.z/ � �IH/�1; z 2 N.z0/;

where 0 < " < "0 suf�ciently small (cf., e.g., Section III.6 of [20]). It follows that
P.�/ is analytic on N.z0/ and

dim.ran.P.z/// < 1; z 2 N.z0/:

In addition, introduce the projections

Q.z/ D IH � P.z/; z 2 N.z0/;

and the transformations (cf. [42])

T .z/ D P.z0/P.z/CQ.z0/Q.z/; z 2 N.z0/:
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It follows that T .�/ is analytic onN.z0/ and for jz�z0j suf�ciently small, also T .�/�1
is analytic,

T .z/ D IH CO.z � z0/; jz � z0j suf�ciently small;

and without loss of generality we may assume in the following that T .�/ and T .�/�1
are analytic on N.z0/. This yields the decomposition ofH into

H D P.z0/H uQ.z0/H

and the associated 2 � 2 block operator decomposition of T .z/A.z/T .z/�1 of the
form

T .z/A.z/T .z/�1 D
�
F.z/ 0

0 G.z/

�
; z 2 N.z0/; (4)

where F.�/ and G.�/ are analytic on N.z0/, and, again without loss of generality,
G.�/ is boundedly invertible on N.z0/,

G.z/�1 2 B.Q.z0/H/; z 2 N.z0/:

Given the block decomposition (4), we follow Howland in introducing the quantity
�.z0IA.�// by

�.z0IA.�// D m.z0I detran.P.z0//.F.�///: (5)

Herem.zI h/ denotes the multiplicity function associated to a meromorphic function
hW� ! C [ ¹1º, which is de�ned by

m.zI h/ D

8
<̂

:̂

k; if z is a zero of h of order k,

�k; if z is a pole of order k,

0; otherwise,

if m does not vanish identically on�, and bym.zI h/ D 1 otherwise. In the former
case,

m.zI h/ D 1

2�i

�

C.zI"/
d�
h0.�/
h.�/

; z 2 �;

where the circle C.zI "/ is chosen suf�ciently small such that C.zI "/ contains no
other singularities or zeros of h except, possibly, z.

In the present context, since F.�/ is analytic on N.z0/, so is detran.P.z0//.F.�//,
and hence

�.z0IA.�// 2 N0 if detran.P.z0//.F.�// 6� 0 on N.z0/.

Repeated applications of Theorem 2.5 then yield the following principal factor-
ization result of [18] (again, extended to the case of Fredholm operators A.�/):



102 J. Behrndt, F. Gesztesy, H. Holden, and R. Nichols

Theorem 2.6 ([18]). Assume that AW� ! B.H/ satis�es Hypothesis 2.3, sup-
pose that A.z/ is boundedly invertible for some z 2 � .i.e., case (ii) in Theo-
rem 2.4 applies/, and let z0 2 � be a pole of A.�/�1 of order n0 2 N. Then there
exist projections Pj and Qj D IH � Pj in H such that with pj D dim.ran.Pj //,
1 � j � n0, one infers that

A.z/ D ŒQ1�.z�z0/P1�ŒQ2�.z�z0/P2� � � � ŒQn0
�.z�z0/Pn0

�An0
.z/; z 2 �;

(6)
and

1 � pn0
� pn0�1 � � � � � p2 � p1 < 1;

where

• An0
.�/ is analytic on �,

• An0
.z/ 2 ˆ.H/, z 2 �,

• ind.A.z// D ind.An0
.z// D 0, z 2 �, jz � z0j suf�ciently small,

• An0
.z/�1 2 B.H/, z 2 �, jz � z0j suf�ciently small.

In addition,
p1 D dim.ker.A.z0// D mg .0IA.z0//;

and hence

�.z0IA.�// D
n0X

jD1
pj � mg.0IA.z0//; �.z0IA.�// � n0;

and, in particular, z0 is a simple pole of A.�/�1 if and only if

�.z0IA.�// D mg .0IA.z0//:

Finally,

ŒIH � A.�/� 2 F.H/ () ŒIH � An0
.�/� 2 F.H/

and

ŒIH � A.�/� 2 Bp.H/ () ŒIH � An0
.�/� 2 Bp.H/;

for some 1 � p � 1:

We refer to [11] for analogous factorizations as in Theorems 2.5 and 2.6 but with
the order of factors in (3) and (6) interchanged.
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3 Algebraic multiplicities of zeros of analytic Fredholm

operators

In this section we recall algebraic multiplicities of zeros of analytic Fredholm oper-
ators following [11] and relate this to Howland’s notion in (5). The pertinent facts in
this context can be found in [16] (see also, Sections XI.8 and XI.9 of [13], Chapter 4
of [15], and Section 11 of [29]). We follow the presentation in [11].

First the notion of zeros of �nite-type is recalled.

De�nition 3.1. Let � � C be open and connected, z0 2 �, and suppose that
AW� ! B.H/ is analytic on �. Then z0 is called a zero of �nite-type of A.�/ if
A.z0/ 2 ˆ.H/ is a Fredholm operator, ker.A.z0// ¤ ¹0º, and A.�/ is boundedly
invertible onD.z0I "0/n¹z0º, for some suf�ciently small "0 > 0.

Assume that AW� ! B.H/ is analytic on � and that z0 is a zero of �nite-type
of A.�/. Since A.�/ is boundedly invertible on D.z0I "0/n¹z0º, for suf�ciently small
"0 > 0, it follows that

ind.A.z0// D dim.ker.A.z0/// � dim.ker.A.z0/
�// D 0;

and hence by [16] (or by Theorem XI.8.1 in [13]) there exists a neighborhood
N.z0/ � � and analytic and boundedly invertible operator-valued functions

Ej W� �! B.H/; j D 1; 2,

such that

A.z/ D E1.z/ zA.z/E2.z/; z 2 N.z0/;

where zA.�/ is of the form
zA.z/ D zP0 C

rX

jD1
.z � z0/

nj zPj ; z 2 N.z0/;

with

zPk.0 � k � r/ mutually disjoint projections in H,

ŒIH � zP0� 2 F.H/; dim.ran. zPj // D 1; 1 � j � r; (7)

n1 � n2 � � � � � nr ; nj 2 N; 1 � j � r:

The integers nj , 1 � j � r , in (7) are uniquely determined byA.�/, and the geometric
multiplicity mg .0IA.z0// of the eigenvalue 0 of A.z0/ is given by

mg .0IA.z0// D dim.ran.IH � zP0//:
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The following de�nition can be found in Section XI.9 of [13] or [16].

De�nition 3.2. Let� � C be open and connected, z0 2 �, suppose that the function
AW� ! B.H/ is analytic on �, and assume that z0 is a zero of �nite-type of A.�/.
Then ma.z0IA.�//, the algebraic multiplicity of the zero of A.�/ at z0, is de�ned to
be

ma.z0IA.�// D
rX

jD1
nj ; (8)

with nj , 1 � j � r , introduced in (7).

Let AW� ! B.H/ be analytic on � and assume that z0 is a zero of �nite-type
of A.�/. As shown in Theorem XI.9.1 in [13] and in [16], one has an extension of
the argument principle for scalar analytic functions to the operator-valued case in the
form

ma.z0IA.�// D trH

�
1

2�i

�

C.z0I"/
d� A0.�/A.�/�1

�

D trH

�
1

2�i

�

C.z0I"/
d� A.�/�1A0.�/

� (9)

for 0 < " < "0 suf�ciently small as in De�nition 3.1. Since A.�/�1 is �nitely mero-
morphic by Theorem 2.4, the integrals in (9) are �nite rank operators (the analytic
and non-�nite-rank part under the integral in (9) yielding a zero contribution when
integrated over C.z0I "/) and hence the trace in (9) is well-de�ned. Next, recalling
our notation of the principal part of an operator-valued meromorphic function in (1),
one also obtains

ma.z0IA.�// D trH

�
1

2�i

�

C.z0I"/
d� ppz0

¹A0.�/A.�/�1º
�

D trH

�
1

2�i

�

C.z0I"/
d� ppz0

¹A.�/�1A0.�/º
�
:

Note that in the special case where A.z/ D A � zIH, z 2 �, one has from (9)

ma.z0IA.�// D trH

�
1

2�i

�

C.z0I"/
d� A0.�/A.�/�1

�

D trH

� �1
2�i

�

C.z0I"/
d� .A � �IH/

�1
�

D ma.z0IA/:
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However, in general the algebraic multiplicity ma.z0IA.�// of a zero of A.�/ at z0
must be distinguished from the algebraic multiplicity ma.0IA.z0// of the eigen-
value 0 of the operator A.z0/.

We conclude this section with the connection between the algebraic multiplicity
ma.z0IA.�// of a zero of A.�/ at z0 in De�nition 3.2 and Howland’s notion of mul-
tiplicity �.z0IA.�// in (5). Note that if AW� ! B.H/ is analytic on � and z0 is
a zero of �nite-type then Hypothesis 2.3 is automatically satis�ed on a suf�ciently
small open neighborhood of z0 and hence the quantity �.z0IA.�// is well de�ned.

Theorem 3.3. Assume that z0 is a zero of �nite-type of A.�/. Then the algebraic mul-
tiplicity ma.z0IA.�// of the zero of A.�/ at z0 and the quantity �.z0IA.�// coincide,
that is,

ma.z0IA.�// D �.z0IA.�//:

Proof. Without loss of generality we may assume that z0 D 0 for the remainder of
the proof of Theorem 3.3. According to (9) we then have

ma.0IA.�// D trH

�
1

2�i

�

C.0I"/
d� A.�/�1A0.�/

�
(10)

for 0 < " < "0 suf�ciently small. An application of Theorem 2.6 (using the notation
employed in the latter) yields

A.z/ D ŒQ1 � zP1�ŒQ2 � zP2� � � � ŒQn0
� zPn0

�An0
.z/; z 2 D.0I "0/; (11)

and

�.0IA.�// D
n0X

jD1
pj ; (12)

where
pj D dim.ran.Pj // and Qj D IH � Pj ; 1 � j � n0: (13)

In the following we compute the trace of the integral in (10). For this one notes
that by (11)

A.z/�1 D ŒAn0
.z/��1ŒQn0

� zPn0
��1 � � � ŒQ1 � zP1��1;

and

A0.z/ D Œ�P1�ŒQ2 � zP2� � � � ŒQn0
� zPn0

�An0
.z/

C ŒQ1 � zP1�Œ�P2� � � � ŒQn0
� zPn0

�An0
.z/

:::
C ŒQ1 � zP1�ŒQ2 � zP2� � � � ŒQn0�1 � zPn0�1�Œ�Pn0

�An0
.z/

C ŒQ1 � zP1�ŒQ2 � zP2� � � � ŒQn0
� zPn0

�A0
n0
.z/:
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Hence one obtains

A.z/�1A0.z/ D ŒAn0
.z/��1ŒQn0

� zPn0
��1 � � � ŒQ1 � zP1�

�1

� ¹Œ�P1�ŒQ2 � zP2� � � � ŒQn0
� zPn0

�

C ŒQ1 � zP1�Œ�P2� � � � ŒQn0
� zPn0

�
:::
C ŒQ1 � zP1� � � � ŒQn0�1 � zPn0�1�Œ�Pn0

�ºAn0
.z/

C ŒAn0
.z/��1A0

n0
.z/;

(14)

and since the last term on the right-hand side of (14) is analytic at z0 D 0, its contour
integral over C.0I "/, 0 < " < "0, vanishes,

�

C.0I"/
d� A.�/�1A0.�/

D
�

C.0I"/
d�ŒAn0

.�/��1ŒQn0
� �Pn0

��1 � � � ŒQ1 � �P1��1

� ¹Œ�P1�ŒQ2 � �P2� � � � ŒQn0
� �Pn0

�

C ŒQ1 � �P1�Œ�P2� � � � ŒQn0
� �Pn0

�
:::
C ŒQ1 � �P1� � � � ŒQn0�1 � �Pn0�1�Œ�Pn0

�ºAn0
.�/:

(15)

Now one obtains from (15) upon repeatedly applying cyclicity of the trace (i.e.,
trH.CD/ D trH.DC/ for C;D 2 B.H/, with CD;DC 2 B1.H/),

�

C.0I"/
d� trH.A.�/�1A0.�//

D
�

C.0I"/
d� trH.ŒQn0

� �Pn0
��1 � � � ŒQ1 � �P1��1

� ¹Œ�P1�ŒQ2 � �P2� � � � ŒQn0
� �Pn0

�

C ŒQ1 � �P1�Œ�P2� � � � ŒQn0
� �Pn0

�
:::
C ŒQ1 � �P1� � � � ŒQn0�1 � �Pn0�1�Œ�Pn0

�º/

D
�

C.0I"/
d�

n0X

jD1
trH.ŒQj � �Pj ��1Œ�Pj �/

(16)

and since

ŒQj � �Pj ��1Œ�Pj � D ŒQj � ��1Pj �Œ�Pj � D ��1Pj ; (17)
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one concludes from (10), (16), (17), (13), and (12) that

ma.0IA.�// D trH

�
1

2�i

�

C.0I"/
d� A.�/�1A0.�/

�

D 1

2�i

�

C.0I"/
d� trH.A.�/�1A0.�//

D 1

2�i

�

C.0I"/
d�

n0X

jD1
trH.ŒQj � �Pj ��1Œ�Pj �/

D 1

2�i

�

C.0I"/
d�
� n0X

jD1
trH.Pj /

�
��1

D
n0X

jD1
pj

D �.0IA.�//:

4 On the notion of an index of meromorphic

operator-valued functions

In this section we recall the notion of the index of meromorphic operator functions
and the meromorphic Fredholm theorem.

Hypothesis 4.1. Let� � C be open and connected and assume thatM.�/ is aB.H/-
valued �nitely meromorphic function on �, that is, there is a discrete set D0 � �

(i.e., a set without limit points in �) such that M W�nD0 ! B.H/ is analytic and
for all z0 2 D0 one has

M.z/ D
1X

kD�N0

.z � z0/kMk.z0/; 0 < jz � z0j < "0; (18)

for some N0 D N0.z0/ 2 N and some 0 < "0 D "0.z0/ suf�ciently small, with

Mk.z0/ 2 F.H/; �N0 � k � �1; Mk.z0/ 2 B.H/; k 2 N0:

One observes that if M.�/ is �nitely meromorphic on �, then also the func-
tion M 0.�/ is a B.H/-valued �nitely meromorphic function on �. It follows from
Lemma 2.2 that the notion of the index ofM.�/ in the next de�nition is well-de�ned.
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De�nition 4.2. Assume Hypothesis 4.1, let z0 2 � and suppose thatM.�/ is bound-
edly invertible onD.z0I "0/n¹z0º for some 0 < "0 suf�ciently small. Assume, in ad-
dition, that the functionM.�/�1 is �nitely meromorphic onD.z0I "0/. Then the index
ofM.�/with respect to the counterclockwise oriented circleC.z0I"/, indC.z0I"/.M.�//,
is de�ned by

indC.z0I"/.M.�// D trH

�
1

2�i

�

C.z0I"/
d� M 0.�/M.�/�1

�

D trH

�
1

2�i

�

C.z0I"/
d� M.�/�1M 0.�/

�
; 0 < " < "0:

(19)

We note that this notion of an index is a bit more general than the one employed
in Chapter 4 in [15] and [16] and hence it is not a priori clear if the right-hand
side of (19) is an integer. However, in the special case depicted in Theorem 4.4 (ii)
(see also (22)) under the additional Hypothesis 4.3, and in the applications in the
following sections, the index indeed turns out to be an integer.

We also note that in the special case of an analytic functionM W� ! B.H/ and
z0 a zero of �nite-type ofM.�/, it follows from Theorem 2.4 thatM.�/�1 is �nitely
meromorphic onD.z0I "0/ for some 0 < "0 suf�ciently small. Therefore, (9) implies
that the index ofM.�/ in (19) coincides with the algebraic multiplicity of the zero of
M.�/ at z0,

indC.z0I"/.M.�// D ma.z0IM.�//: (20)

Moreover, if Mj .�/, j D 1; 2, are B.H/-valued �nitely meromorphic functions
that are boundedly invertible on D.z0I "0/n¹z0º for some z0 2 � and 0 < "0 suf�-
ciently small, and Mj .�/�1, j D 1; 2, are �nitely meromorphic on D.z0I "0/n¹z0º,
then employing the identity

ŒM1.z/M2.z/�
0ŒM1.z/M2.z/�

�1

D M 0
1.z/M1.z/

�1 CM1.z/ŒM
0
2.z/M2.z/

�1�M1.z/
�1;

and taking the trace on either side yields the familiar formula

indC.z0I"/.M1.�/M2.�// D indC.z0I"/.M1.�//C indC.z0I"/.M2.�//;

in particular,

indC.z0I"/.M.�/�1/ D �indC.z0I"/.M.�//:
For interesting applications of this circle of ideas see also [1], [3], [6], and [37].
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Next we strengthen Hypothesis 4.1 as follows:

Hypothesis 4.3. Suppose M.�/ satis�es Hypothesis 4.1 and assume that for every
z0 2 D0 the operator M0.z0/ in the Laurent series in (18) is a Fredholm operator,
that is,

M0.z0/ 2 ˆ.H/; z0 2 D0:

In addition, suppose that

M.z/ 2 ˆ.H/; z 2 �nD0:

One then recalls the meromorphic Fredholm theorem in the following form:

Theorem 4.4 ([16], [17], Theorem XIII.13 in [33], [34], and [40]). Assume thatM.�/
satis�es Hypothesis 4.3. Then either

(i) M.z/ is not boundedly invertible for any z 2 �nD0,

or else,

(ii) M.�/�1 is �nitely meromorphic on �. More precisely, there exists a discrete
subset D1 � � .possibly, D1 D ;/ such that M.z/�1 2 B.H/ for all z 2
�n¹D0[D1º,M.�/�1 extends to an analytic function on�nD1, meromorphic
on � such that

M.z/�1 2 ˆ.H/ for all z 2 �nD1;

and if z1 2 D1, then

M.z/�1 D
1X

kD�N0

.z � z1/
kDk.z1/; 0 < jz � z1j < "0;

for some N0 D N0.z1/ 2 N and some 0 < "0 D "0.z1/ suf�ciently small, with

Dk.z1/ 2 F.H/; �N0 � k � �1; Dk.z1/ 2 B.H/; k 2 N0:

In addition,
D0.z1/ 2 ˆ.H/: (21)

Finally, if ŒIH �M.z/� 2 B1.H/ for all z 2 �nD0, then

ŒIH �M.z/�1� 2 B1.H/; z 2 �nD1;

ŒIH �D0.z1/� 2 B1.H/; z1 2 D1:
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Assume Hypothesis 4.3, let z0 2 � and suppose that M.�/ is boundedly invert-
ible on D.z0I "0/n¹z0º for some 0 < "0 suf�ciently small (i.e., case (ii) in Theo-
rem 4.4 applies). Then the functionM.�/�1 is �nitely meromorphic onD.z0I "0/ and
it follows from the operator-valued version of the argument principle proved in [16]
(see also Theorem 4.4.1 in [15]) that

indC.z0I"/.M.�// 2 Z: (22)

5 Abstract perturbation theory and applications

to Birman–Schwinger-type operators

In this section, following Kato [19], Konno and Kuroda [23], and Howland [17],
we �rst recall a class of factorable non-self-adjoint perturbations of a given unper-
turbed non-self-adjoint operator. We recall the treatment in [12] (in which H0 is
explicitly permitted to be non-self-adjoint, cf. Hypothesis 5.1 (i) below) and refer to
the latter for detailed proofs.

The principal result of this section then consists of the index formulas in The-
orem 5.5, which are variants of Theorems 4.5 and 5.5 in [11]. We start with the
following set of hypotheses.

Hypothesis 5.1. (i) Suppose that H0W dom.H0/ ! H, dom.H0/ � H, is a densely
de�ned, closed, linear operator in H, with nonempty resolvent set,

�.H0/ ¤ ;;
V1W dom.V1/ ! K, dom.V1/ � H, a densely de�ned, closed, linear operator from
H to K, and V2W dom.V2/ ! K, dom.V2/ � H, a densely de�ned, closed, linear
operator from H to K such that

dom.V1/ � dom.H0/; dom.V2/ � dom.H�
0 /:

In the following we denote

R0.z/ D .H0 � zIH/
�1; z 2 �.H0/:

(ii) For some (and hence for all) z 2 �.H0/, the operator �V1R0.z/V �
2 , de�ned

on dom.V �
2 /, has a bounded extension in K, denoted by K.z/,

K.z/ D �V1R0.z/V �
2 2 B.K/: (23)

(iii) 1 2 �.K.�0// for some �0 2 �.H0/.
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Next, following Kato [19], one introduces

R.z/ D R0.z/ �R0.z/V �
2 ŒIK �K.z/��1V1R0.z/ (24)

for z 2 ¹� 2 �.H0/ j 1 2 �.K.�//º.

Theorem 5.2 ([19]). Assume Hypothesis 5.1 and z 2 ¹� 2 �.H0/ j 1 2 �.K.�//º.
Then, R.z/ in (24) de�nes a densely de�ned, closed, linear operator H inH by

R.z/ D .H � zIH/�1:

Moreover,
V1R.z/; V2R.z/

� 2 B.H;K/

and

R.z/ D R0.z/ �R.z/V �
2 V1R0.z/

D R0.z/ �R0.z/V �
2 V1R.z/:

Finally, H is an extension of the operator

.H0 C V �
2 V1/ �

�
dom.H0/ \ dom.V �

2 V1/
�
;

where the set dom.H0/ \ dom.V �
2 V1/ may consist of ¹0º only.

Similarly, using the symmetry between H0 and H inherent in Kato’s formalism
(cf. Sections 2 and 3 of [12]) one also derives

V1R.z/V
�
2 2 B.K/; z 2 �.H/;

and

IK � V1R.z/V �
2 D ŒIK �K.z/��1; z 2 ¹� 2 �.H0/ j 1 2 �.K.�//º: (25)

For our purposes the following lemma is useful.

Lemma 5.3. Assume Hypothesis 5.1 and let z1; z2 2 �.H0/. Then

K.z1/ D K.z2/C .z2 � z1/V1R0.z1/R0.z2/V �
2 (26)

and if, in addition, z1; z2 2 �.H/ then

ŒIK �K.z1/��1 D ŒIK �K.z2/�
�1 C .z2 � z1/V1R.z1/R.z2/V

�
2 : (27)
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Proof. Formula (26) follows from (23) and the resolvent equation for R0.z/,
z 2 �.H0/; similarly, formula (27) is clear from (25) and the resolvent equation
for R.z/, z 2 �.H/.

Note also that (26) yields the useful formula

K 0.z/ D �V1R0.z/R0.z/V �
2 ; z 2 �.H0/: (28)

The next result represents an abstract version of the Birman–Schwinger principle
due to Birman [4] and Schwinger [35] (cf. also [5], [10], [21], [22], [30], [31], [36],
Chapter III of [38], and [39]). It is due to Konno and Kuroda [23] in the case where
H0 is self-adjoint. For the general case see [12].

Theorem 5.4 ([23]). Assume Hypothesis 5.1 and let z0 2 �.H0/. Then,

z0 2 �p.H/ () 1 2 �p.K.z0//; (29)

and

z0 2 �.H/ () 1 2 �.K.z0//:

More precisely, if in (29) one has Hf D z0f for some f 2 dom.H/, f 6D 0,
then

0 6D g D ŒIK �K.z1/��1V1R0.z1/f D .z0 � z1/
�1V1f;

where z1 2 ¹� 2 �.H0/ j 1 2 �.K.�//º, z1 ¤ z0, satis�es K.z0/g D g, and
conversely, if in (29) one has K.z0/g D g for some g 2 K, g 6D 0, then

0 ¤ f D �R0.z0/V �
2 g 2 dom.H/

satis�es Hf D z0f .

If, in addition to Hypothesis 5.1, it is assumed that IK � K.z/ is a Fredholm
operator for all z 2 �.H0/, then by Theorem 2.7 in [11] (see also Theorem 3.2 in [12])
the geometric multiplicity of an eigenvalue z0 of H coincides with the geometric
multiplicity of the eigenvalue 1 of K.z0/ and is �nite,

mg .z0IH/ D dim.ker.H � z0IH//
D dim.ker.IK �K.z0///

D mg .1IK.z0//
< 1:
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The next theorem is the main result in this section. Item (i) is a slight extension
(cf. [11]) of a multiplicity result due to Latushkin and Sukhtyaev [25], and item (ii)
resembles an analog of the Weinstein–Aronszajn-type formula (cf., e.g., [2], [17],
Section IV.6 of [20], [24], and Section 9.3 of [41]) in the case whereH andH0 have
common discrete eigenvalues.

Theorem 5.5. Assume Hypothesis 5.1. Then the following assertions (i)–(iv) hold.

(i) If z0 2 �.H0/ \ �d .H/, then the index formula
indC.z0I"/.IK �K.�// D ma.z0IH/ (30)

holds for " > 0 suf�ciently small. Furthermore, z0 is a zero of �nite-type of the
function IK �K.�/, and hence

�.z0I IK �K.�// D ma.z0I IK �K.�// D indC.z0I"/.IK �K.�//: (31)

(ii) If z0 2 �d .H0/ \ �d .H/, then the index formula
indC.z0I"/.IK �K.�// D ma.z0IH/ �ma.z0IH0/ (32)

holds for " > 0 suf�ciently small.

(iii) Assume in addition that K.z/ 2 B1.K/ for all z 2 �.H0/ and either that
�.H0/ is connected, or else, that Hypothesis 5.1 (iii), that is, 1 2 �.K.�//,
holds for some � 2 C lying in each of the connected components of �.H0/.
If z0 2 �d .H0/, then z0 2 .�d .H/ [ �.H// and hence the index formula (32)
holds.

(iv) Assume in addition that K.z/ 2 B1.K/ for all z 2 �.H0/ and suppose that
D.z0I "0/n¹z0º \ �.H/ D ; for 0 < "0 suf�ciently small. If z0 2 �d .H0/,
then z0 2 .�d .H/ [ �.H// and hence the index formula (32) holds.

Proof. Observe �rst that by the assumptions in (i) and (ii) there exists "0 > 0 such
that the punctured disc D.z0I "0/n¹z0º is contained in �.H/ \ �.H0/. Fix a point
z2 2 �.H/\ �.H0/ and recall from Lemma 5.3 (i) that

K.z/ D K.z2/C .z2 � z/V1.H0 � zIH/
�1R0.z2/V �

2 (33)

holds for all z 2 D.z0I "0/ if z0 2 �.H0/ and for all z 2 D.z0I "0/n¹z0º if
z0 2 �d .H0/. Therefore, since .H0�zIH/�1 is analytic onD.z0I "0/ if z0 2 �.H0/
and �nitely meromorphic if z0 2 �d .H0/ – see, e.g., Chapter 1, ÷2, Theorem 2.1
and (2.3) in [14] or [20] – it follows from (33) and V1.H0 � zIH/

�1 2 B.H;K/
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that the same is true for the functions K.�/ and IK � K.�/. The same argument
using the resolvent of H and formula (27) in Lemma 5.3 shows that the function
ŒIK�K.�/��1 is analytic on the punctured discD.z0I "0/n¹z0º and �nitely meromor-
phic onD.z0I "0/. Hence the index of IK�K.�/with respect to the counterclockwise
oriented circle C.z0; "/, 0 < " < "0, is well-de�ned and we compute with the help
of (28), the cyclicity of the trace, and (24)

indC.z0I"/.IK �K.�// D trK

�
1

2�i

�

C.z0I"/
d� ŒIK �K.�/��1.�K 0.�//

�

D 1

2�i
trK

��

C.z0I"/
d�ŒIK �K.�/��1V1R0.�/R0.�/V �

2

�

D 1

2�i
trH

��

C.z0I"/
d�R0.�/V �

2 ŒIK �K.�/��1V1R0.�/
�

D trH

� �1
2�i

�

C.z0I"/
d� ŒR.�/� R0.�/�

�

D ma.z0IH/ �ma.z0IH0/;

where the third equality is justi�ed in a manner analogous to (2) (cf. Proposition 4.2.2
in [15]), and the last equality holds if z0 2 �d .H0/. This proves the index for-
mula (32). Clearly, if z0 2 �.H0/ then

trH

� �1
2�i

�

C.z0I"/
d� R0.�/

�
D 0

and hence the term ma.z0IH0/ is absent in the above computation; this implies the
index formula (30).

Next, we show that z0 2 �.H0/\�d .H/ is a zero of �nite-type of IK �K.�/; the
�rst equality in (31) then follows from Theorem 3.3 and the second equality is clear
by (20). In order to see that z0 is a zero of �nite-type recall that IK �K.z/ is bound-
edly invertible for all z 2 D.z0I "0/n¹z0º and that z0 2 �d .H/ and Theorem 5.4
imply dim.ker.IK �K.z0/// < 1. Moreover, the function ŒIK �K.�/��1 is �nitely
meromorphic onD.z0I "0/ and it follows from the particular form of the Laurent se-
ries of .H � zIH/

�1 in a neighborhood of z0 2 �d .H/ (see, e.g., Chapter 1, ÷2,
Theorem 2.1 and (2.3) in [14]) and Lemma 5.3 (ii) that the zero order coef�cient of
the Laurent series of ŒIK �K.�/��1 in a neighborhood of z0 is a Fredholm operator,
that is, Hypothesis 4.3 is satis�ed for ŒIK �K.�/��1. Hence, Theorem 4.4 applies to
the function ŒIK �K.�/��1 and from (21) we obtain that IK �K.z0/ is a Fredholm
operator. Summing up we have shown that z0 is a zero of �nite-type of IK �K.�/.
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We turn to a discussion of item (iii). If z0 2 �.H/, no proof is required and the
index formula (5.23) takes the form

indC.z0I"/.IK �K.�// D �ma.z0IH0/:

So we focus on z0 2 �.H/. From the outset it is clear that for 0 < "0 suf�ciently
small, R0.z/V �

2 , V1R0.z/, and K.z/ are analytic on D.z0I "0/n¹z0º, and K.z/ is
�nitely meromorphic onD.z0I "0/. In particular, K.z/, z 2 D.z0I "0/n¹z0º, is of the
form,

K.z/ D
1X

kD�N0

.z � z0/
kKk.z0/; 0 < jz � z0j < "0;

for some N0 2 N, with Kk.z0/ 2 F.K/, �N0 � k � �1, Kk.z0/ 2 B.K/, k 2 N0.
Hence,

h 1X

kD0
.z � z0/

kKk.z0/
i

2 B1.K/; 0 < jz � z0j < "0;

implying that the norm limit,

K0.z0/ D lim
z!z0

h 1X

kD0
.z � z0/kKk.z0/

i
2 B1.K/;

exists and is compact. In particular, this implies

ŒIK �K0.z0/� 2 ˆ.K/: (34)

If �.H0/ is connected then Hypothesis 5.1 (iii) and K.z/ 2 B1.K/, z 2 �.H0/,
imply that IK �K.z/ is boundedly invertible for some z 2 D.z0I "0/n¹z0º. If �.H0/
is not connected then the assumption 1 2 �.K.�// for some � 2 C in each of
the connected components of �.H0/ implies in the same way that IK � K.z/ is
boundedly invertible for some z 2 D.z0I "0/n¹z0º. Consequently, Theorems 2.4 (ii),
respectively, 4.4 (ii), apply, and hence ŒIK �K.z/��1 is analytic onD.z0I "0/n¹z0º,
respectively, �nitely meromorphic on D.z0I "0/ (possibly, upon further diminishing
"0 > 0). By (24), then alsoR.z/ is analytic onD.z0I "0/n¹z0º and �nitely meromor-
phic onD.z0I "0/, implying z0 2 �d .H/.

Finally, we brie�y turn to item (iv) again assuming z0 2 �.H/ without loss of
generality. By (25), the condition .D.z0I "0/ n ¹z0º/ \ �.H/ D ; guarantees the
bounded invertibility of IK�K.z/ for z 2 D.z0I "0/n¹z0º and one can now basically
follow the proof of item (iii); we omit the details.
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Remark 5.6. In connection with Theorem 5.5 (iii), one notes that since the resolvent
set �.H0/ � C is open, its connected components are open and at most countable
(see, e.g., Theorem II.2.9 in [9]). In particular, in the important special case where
�.H0/ � R, there are at most two components and in quantum mechanical applica-
tions associated with short-range potentials one frequently encounters that

lim
y!˙1

kK.iy/kB.K/ D 0;

and hence the condition 1 2 �.K.�// is obviously satis�ed for � D iy with 0 < jyj
suf�ciently large.

In this context we note that condition (34), that is, ŒIK � K0.z0/� 2 ˆ.K/,
was inadvertently omitted in Theorem 5.5 in [11] and hence needs to be added to
its hypotheses.

6 An index formula for the Weyl–Titchmarsh function

associated to closed extensions of dual pairs

In this section we derive the index associated with the Weyl–Titchmarsh function
associated to closed extensions of dual pairs of operators.

LetK be a separable, complex Hilbert space with scalar product .�; �/K, and let A
and B be densely de�ned, closed, linear operators in K such that

.Bf; g/K D .f; Ag/K; f 2 dom.B/; g 2 dom.A/: (35)

A pair of operators ¹A;Bº that satis�es (35) is called a dual pair. It follows imme-
diately from (35) that

A � B� and B � A�:
We recall the notion of a boundary triple for a dual pair from [26] (see also [27]

and [28]).

De�nition 6.1. Let ¹A;Bº be a dual pair of operators in K. A triple ¹H; �B ; �Aº,
whereH D H0 ˚ H1 is a Hilbert space and

�B D .�B0 ; �
B
1 /

>W dom.B�/ �! H0 ˚ H1 (36)

and

�A D .�A0 ; �
A
1 /

>W dom.A�/ �! H1 ˚ H0; (37)

are linear mappings, is called a boundary triple for the dual pair ¹A;Bº if the follow-
ing two conditions hold.
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(i) For all f 2 dom.B�/ and g 2 dom.A�/, the following abstract Green’s identity
holds:

.B�f; g/K � .f; A�g/K D .�B1 f; �
A
0 g/H1

� .�B0 f; �A1 g/H0
: (38)

(ii) The mappings �B and �A in (36) and (37) are both onto.

Next, assume that ¹A;Bº is a dual pair of operators in K and that ¹H; �B ; �Aº,
H D H0 ˚ H1, is a boundary triple for ¹A;Bº. Then one has

A D B� � ker.�B/ and B D A� � ker.�A/;

and the mappings in (36) and (37) are continuous when dom.B�/ and dom.A�/ are
equipped with the graph norm. Moreover, the closed operators

A0 D B� � ker.�B0 / and A1 D B� � ker.�B1 /;

B0 D A� � ker.�A0 / and B1 D A� � ker.�A1 /;

satisfy B0 D A�
0 and B1 D A�

1 , and

A � A0; A1 � B� and B � B0; B1 � A�:

More generally, with the help of a boundary triple for the dual pair ¹A;Bº one can
describe all closed extensions A‚ of A that are restrictions of B�, that is,

A � A‚ � B�

with the help of closed linear subspaces ‚ in H0 � H1. We refer the reader to [26]
and [27] for more details and concentrate on the special case of extensions of A of
the form

A‚ D B� � ker.�B1 �‚�B0 /; (39)

where we assume that ‚ 2 B.H0;H1/ is a bounded operator from H0 into H1.
In order to state our main result in this context some more de�nitions are neces-

sary. First, we recall the notion of  -�eld and Weyl–Titchmarsh function associated
to a boundary triple for a dual pair treated in [26] and [27]. Suppose that �.A0/ 6D ;,
�.B0/ 6D ;, and observe that the direct sum decompositions

dom.B�/ D dom.A0/u ker.B� � zIK/; z 2 �.A0/; (40)

and

dom.A�/ D dom.B0/u ker.A� � z0IK/; z0 2 �.B0/; (41)
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hold. Since

dom.A0/ D ker.�B0 /; dom.B0/ D ker.�A0 /;

it follows from (40) that the mapping �B0 is invertible on ker.B� � zIK/, and it
follows from (41) that the mapping �A0 is invertible on ker.A� � z0IK/.

De�nition 6.2. Let ¹A;Bº be a dual pair of operators in K and let ¹H; �B ; �Aº be
a boundary triple. The  -�elds .�/ and �.�/ associated to ¹H; �B ; �Aº are de�ned
by

.z/ D .�B0 � ker.B� � zIK//
�1; z 2 �.A0/;

and

�.z0/ D .�A0 � ker.A� � z0IK//�1; z0 2 �.B0/;

respectively. The Weyl–Titchmarsh function M.�/ associated to ¹H; �B ; �Aº is de-
�ned by

M.z/ D �B1 .�
B
0 � ker.B� � zIK//�1; z 2 �.A0/:

It is important to note that the  -�eld satis�es

.z1/ D .IK C .z1 � z2/.A0 � z1IK/�1/.z2/; zj 2 �.A0/; j D 1; 2: (42)

Moreover, the valuesM.z/ of the Weyl–Titchmarsh function are bounded operators
from H0 toH1,

M.z/ 2 B.H0;H1/; z 2 �.A0/;
and the Weyl–Titchmarsh function and the  -�elds are related via

M.z1/ �M.z2/ D .z1 � z2/�.Sz2/�.z1/; zj 2 �.A0/; j D 1; 2: (43)

We shall assume from now on that ¹A;Bº is a dual pair and ¹H; �B ; �Aº is a
boundary triple with the additional propertyH0 D H1, which can be viewed as a non-
symmetric analog of the case of equal de�ciency indices of an underlying symmetric
operator. Consider a closed extension A‚ of A as in (39) with ‚ 2 B.H0/, and
assume that z 2 �.A0/. Then by Proposition 5.2 in [26] one has

z 2 �p.A‚/ () 0 2 �p.‚ �M.z//;
and

z 2 �.A‚/ () 0 2 �.‚ �M.z//:
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Moreover, for all z 2 �.A0/ \ �.A‚/, the following Krein-type resolvent formula
holds,

.A‚ � zIK/�1 D .A0 � zIK/
�1 C .z/Œ‚ �M.z/��1�. Nz/�: (44)

The next lemma will be useful in the proof of our main result Theorem 6.4 below
(cf. Corollary 4.9 in [26]). For the convenience of the reader we provide a simple
direct proof in the present situation.

Lemma 6.3. Let ¹A;Bº be a dual pair of operators in K, let ¹H; �B ; �Aº be a
boundary triple with A0 D B� � ker.�B0 / and Weyl–Titchmarsh functionM.�/, and
assume that H0 D H1. Suppose that ‚ 2 B.H0/ and let A‚ be de�ned as in (39).
Then ¹H; �B;‚; �A;‚º, where

�B;‚ D
 
�
B;‚
0

�
B;‚
1

!
; �

B;‚
0 D �B1 �‚�B0 ; �

B;‚
1 D ��B0 ;

and

�A;‚ D
 
�
A;‚
0

�
A;‚
1

!
; �

A;‚
0 D �A1 �‚��A0 ; �

A;‚
1 D ��A0 ;

is a boundary triple for the dual pair ¹A;Bº with A‚ D B� � ker.�B;‚0 /. The
corresponding Weyl–Titchmarsh functionM‚.�/ is given by

M‚.z/ D .‚ �M.z//�1; z 2 �.A‚/ \ �.A0/: (45)

Proof. Let f 2 dom.B�/ and g 2 dom.A�/. Then it follows with the help of the
abstract Green’s identity (38) for the boundary triple ¹H; �B ; �Aº that

.�
B;‚
1 f; �

A;‚
0 g/H0

� .�B;‚0 f; �
A;‚
1 g/H0

D .��B0 f; �A1 g �‚��A0 g/H0
� .�B1 f �‚�B0 f;��A0 g/H0

D .�B1 f; �
A
0 g/H0

� .�B0 f; �A1 g/H0

D .B�f; g/K � .f; A�g/K;

and hence the triple ¹H; �B;‚; �A;‚º satis�es the abstract Green’s identity in De�-
nition 6.1 (i). Moreover, as

 
�
B;‚
0

�
B;‚
1

!
D W ‚

B

 
�B0

�B1

!
; W ‚

B D
� �‚ IH0

�IH0
0

�
; (46)
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and  
�
A;‚
0

�
A;‚
1

!
D W ‚�

A

 
�A0

�A1

!
; W ‚�

A D
��‚� IH0

�IH0
0

�
; (47)

and the 2 � 2 block operator matrices W ‚
B and W ‚�

A in (46) and (47) are boundedly
invertible, it follows that both mappings

�B;‚ D .�
B;‚
0 ; �

B;‚
1 />W dom.B�/ �! H0 ˚ H0

and

�A;‚ D .�
A;‚
0 ; �

A;‚
1 />W dom.A�/ �! H0 ˚ H0;

are onto. Hence also condition (ii) in De�nition 6.1 holds for ¹H; �B;‚; �A;‚º,
and it follows that ¹H; �B;‚; �A;‚º is a boundary triple for the dual pair ¹A;Bº.
By construction, one has (cf. (39))

B� � ker.�B;‚0 / D B� � ker.�B1 �‚�B0 / D A‚:

Next, it will be veri�ed that the Weyl–Titchmarsh function M‚.�/ correspond-
ing to the boundary triple ¹H; �B;‚; �A;‚º has the form (45). Assume that fz 2
ker.B� � zIK/ and that z 2 �.A0/ \ �.A‚/. Since M.�/ is the Weyl–Titchmarsh
function of the boundary triple ¹H; �B ; �Aº, one has M.z/�B0 fz D �B1 fz , and
hence it follows that

Œ‚ �M.z/��B;‚1 fz D �Œ‚ �M.z/��B0 fz
D �‚�B0 fz C �B1 fz

D �
B;‚
0 fz :

(48)

From the direct sum decomposition

dom.B�/ D dom.A‚/u ker.B� � zIK/
D ker.�B;‚0 /u ker.B� � zIK/; z 2 �.A‚/;

and the fact that �B;‚0 maps onto H0 one then concludes together with (48) that
Œ‚ �M.z/� maps ontoH0. Moreover, one has

ker.‚ �M.z// D ¹0º: (49)

In fact, if ‚' D M.z/' for some ' 2 H0, then by (40) there exists an element
fz 2 ker.B� � zIK/ such that �B0 fz D '. This leads to

‚�B0 fz D ‚' D M.z/' D M.z/�B0 fz D �B1 fz;
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and hence fz 2 dom.A‚/ \ ker.B� � zIK/. Therefore, fz 2 ker.A‚ � zIK/, and
as z 2 �.A‚/ by assumption, we conclude fz D 0 and ' D �B0 fz D 0. This
shows (49). Now it follows from (48) that

Œ‚ �M.z/��1�B;‚0 fz D �
B;‚
1 fz

for all fz 2 ker.B� � zIK/ and z 2 �.A0/ \ �.A‚/. This �nally implies that the
Weyl–Titchmarsh functionM‚.�/ has the form (45).

The next theorem is the main result of this section. As in Lemma 6.3 we
shall assume here that the boundary triple ¹H; �B ; �Aº has the additional property
H0 D H1.

Theorem 6.4. Let ¹A;Bº be a dual pair of operators in K, let ¹H; �B ; �Aº be a
boundary triple with A0 D B� � ker.�B0 / and Weyl–Titchmarsh functionM.�/, and
assume that H0 D H1. Furthermore, let ‚ 2 B.H0/ be a bounded operator and
consider the extension

A‚ D B� � ker.�B1 �‚�B0 /:
Then the following assertions (i) and (ii) hold.

(i) If z0 2 �.A0/ \ �d .A‚/, then the index formula
indC.z0I"/.‚ �M.�// D ma.z0IA‚/

holds for " > 0 suf�ciently small. Furthermore, z0 is a zero of �nite-type of the
function ‚ �M.�/, and hence

�.z0I‚�M.�// D ma.z0I‚�M.�// D indC.z0I"/.‚ �M.�//: (50)

(ii) If z0 2 �d .A0/ \ �d .A‚/, then the index formula
indC.z0I"/.‚ �M.�// D ma.z0IA‚/ �ma.z0IA0/

holds for " > 0 suf�ciently small.

Proof. Choose "0 > 0 such that D.z0I "0/n¹z0º � �.A0/ \ �.A‚/. Then it follows
from (42) and (43) that the Weyl–Titchmarsh function admits the representation

M.z1/ D M.z2/C .z1 � z2/�.Sz2/�.IK C .z1 � z2/.A0 � z1IK/�1/.z2/; (51)

with zj 2 �.A0/, j D 1; 2. If z0 is a point in �.A0/, then the resolvent .A0 � zIK/�1
is analytic on a disc D.z0I "0/ with "0 > 0 suf�ciently small, and if z0 is a dis-
crete eigenvalue of A0 the resolvent .A0 � zIK/

�1 is analytic on a punctured disc
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D.z0I "0/n¹z0º with "0 > 0 suf�ciently small, and �nitely meromorphic on the disc
D.z0I "0/. Hence one concludes from (51) that in the case z0 2 �.A0/ also the
Weyl–Titchmarsh function M.�/ is analytic on the disc D.z0I "0/, and in the case
z0 2 �d .A0/ the Weyl–Titchmarsh function M.�/ is analytic on the punctured disc
D.z0I "0/n¹z0º and �nitely meromorphic on D.z0I "0/. It is clear that the same is
also true for the function

‚ �M.�/:
Similarly, consider the boundary triple ¹H; �B;‚; �A;‚º in Lemma 6.3 and the cor-
responding Weyl–Titchmarsh function

M‚.z/ D Œ‚ �M.z/��1; (52)

where the operators M‚.z/ 2 B.H0/ are well-de�ned for all z 2 �.A0/ \ �.A‚/.
If ‚.�/ and �‚.�/ denote the corresponding  -�elds, then one has (cf. (51))

M‚.z1/ D M‚.z2/C .z1 � z2/�‚.Sz2/�ŒIK C .z1 � z2/.A‚ � z1IK/
�1�‚.z2/;

(53)
with zj 2 �.A‚/, j D 1; 2. Since z0 2 �d .A‚/ by assumption, it follows as
above from the properties of the resolvent .A‚ � zIK/

�1 and (53) that the func-
tion M‚.�/ in (52) is �nitely meromorphic on the disc D.z0I "0/. Furthermore, one
obtains from (43) that

d

dz
Œ‚ �M.z/� D � d

dz
M.z/ D ��. Nz/�.z/; z 2 �.A0/; (54)

and hence one computes for 0 < " < "0 with the help of (54) and (44),

indC.z0I"/.‚ �M.�// D 1

2�i
trH0

��

C.z0I"/
d� Œ‚ �M.�/��1.�M 0.�//

�

D �1
2�i

trH0

��

C.z0I"/
d�Œ‚ �M.�/��1�. N�/�.�/

�

D �1
2�i

trK

��

C.z0I"/
d�.�/ Œ‚ �M.�/��1�.�/�

�

D �1
2�i

trK

��

C.z0I"/
d� Œ.A‚ � �I /�1 � .A0 � �I /�1�

�

D ma.z0IA‚/ �ma.z0IA0/;
where the third equality is justi�ed in a manner analogous to (2) (cf. Proposition 4.2.2
in [15]). This shows the index formula in assertion (ii). Clearly, if z0 2 �.A0/ then
the term ma.z0IA0/ is absent and hence the index formula reduces to the one in
assertion (i).
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The same argument as in the proof of Theorem 5.5 shows that the point
z0 2 �.A0/ \ �d .A‚/ is a zero of �nite-type of the function Œ‚ �M.�/�. Then (50)
follows from Theorem 3.3 and (20).

We conclude this section with the observation that the far simpler case of Krein-
type resolvent formulas in terms of boundary data maps for one-dimensional Schrö-
dinger and Sturm–Liouville operators discussed in [7] and [8], readily yield anal-
ogous formulas for the index of these boundary data maps in terms of (algebraic)
multiplicities of eigenvalues. One can follow the computation in the proof of Theo-
rem 6.4 line by line; we omit further details.
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1 Introduction

This paper is strongly inspired by the work of Pavel Exner on Schrödinger operators
with singular interactions of ı and ı0-type supported on hypersurfaces in Rd . Such
operators play an important role in mathematical physics, for instance, in nuclear
physics or solid state physics or in connection with photonic crystals or other nano-
structures. In the case of a curve in R2 such models are also called “leaky quantum
wires.” The �rst rigorous investigations of such operators started in the late 1980s
(see, e.g., [1], [14], and [15]), and the interest in these operators grew steadily in the
last two decades. We refer the reader to the review paper [26], the monograph [30],
the references therein and also to the more recent papers [6], [7], [10], [23], [24],
[29], [35], and [44].

Let † � Rd , where d � 2, be a C1-smooth closed compact hypersurface
without boundary, which naturally splits the Euclidean space Rd into a bounded do-
main �� and an exterior domain �C. Moreover, let ˛; ! 2 L1.†/ be real-valued
functions. The Schrödinger operator H˛;† with ı-interaction of strength ˛ and the
Schrödinger operator K!;† with ı0-interaction of strength ! are formally given by

�� � ˛ı.x �†/ and �� � !ı0.x �†/: (1)

We de�ne these operators rigorously via quadratic forms; see De�nition 1.1 below.
Let us �rst �x some notation. Since the space L2.Rd / naturally decomposes as
L2.Rd / D L2.�C/˚L2.��/, we can write functions u 2 L2.Rd / as u D uC˚u�
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with u˙ D u � �˙ 2 L2.�˙/. The L2-based Sobolev spaces of order s � 0 over
Rd and�˙ are denoted byH s.Rd / andH s.�˙/, respectively. Note that the hyper-
surface † coincides with the boundaries @�˙ of the domains �˙. Hence, for any
u 2 H 1.Rd / and u˙ 2 H 1.�˙/ the traces uj† and u˙j† on † are well de�ned as
functions inL2.†/. Further, for a function u 2 H 1.Rd n†/ ´ H 1.�C/˚H 1.��/
we de�ne its jump on † as Œu�† ´ uCj† � u�j†.

Let us now introduce the following quadratic forms that correspond to the formal
expression in (1). According to §2 of [14], §3.4 of [10] and Proposition 3.1 in [6],
the symmetric quadratic forms

h˛;†Œu� ´ kruk2 � .˛uj†; uj†/†; dom h˛;† ´ H 1.Rd /;

k!;†Œu� ´ kruCk2C C kru�k2� � .!Œu�†; Œu�†/†; dom k!;† ´ H 1.Rd n†/;

in L2.Rd / are closed, densely de�ned and bounded from below; here u D uC ˚ u�
with u˙ as above, and k � k˙ denotes the norm on L2.�˙ICd /.

De�nition 1.1. Let H˛;† and K!;† be the self-adjoint operators in L2.Rd / corre-
sponding to the forms h˛;† and k!;†, respectively, via the �rst representation theo-
rem (Theorem VI.2.1 in [37]). Moreover, set Hfree ´ H0;† (˛ � 0) and KN ´ K0;†

(! � 0).

The operator H˛;† is called a Schrödinger operator with ı-interaction of strength
˛ supported on †; the operator K!;† is called a Schrödinger operator with ı0-inter-
action of strength1 ! supported on †. The operator Hfree is the usual free Laplacian
on Rd , and KN is the orthogonal sum of the standard Neumann Laplacians on �C
and��. Let us mention that the operators H˛;† and K!;† can also be introduced via
interface conditions at the hypersurface †; see, e.g., [10].

The aim of this paper is to derive trace formulae for H˛;† and K!;†. According
to [10] for m 2 N the resolvent power differences

.H˛;† � �/�m � .Hfree � �/�m; m >
d � 2
2

; � 2 �.H˛;†/; (2a)

.K!;† � �/�m � .Hfree � �/�m; m >
d � 1
2

; � 2 �.K!;†/; (2b)

are in the trace class. Their traces as functions of � or as functions of the interaction
strengths are expected to encode a lot of information on the operators H˛;† and K!;†

themselves and on the shape of †. Such non-trivial connections have been observed

1We point out that, in the case of invertible !, not ! itself, but its inverse is frequently called the
strength of the ı 0-interaction.
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in various other settings in the classical papers [18], [36], and [42] and more recently
in, e.g., [5], [34], [38], [39], and [46].

Themain results of the paper (see Theorems 1.2 and 1.3) are formulae that express
the traces of the resolvent power differences in (2) in terms of traces of derivatives
of certain operator-valued functions in the boundary space L2.†/. These operator-
valued functions are, in turn, expressed in terms of Neumann–to–Dirichlet maps on
�˙ corresponding to the differential expression ���� and in terms of the coupling
functions ˛, !. Trace formulae of this kind are useful (see, e.g., [19], [20], and [32])
in connection with the estimation of the spectral shift function.

1.1 Traces, Neumann–to–Dirichlet maps and some operator functions

We �rst recall some notions that are needed in order to formulate the main results
of this paper. For a compact operator K in a Hilbert space H we de�ne its singular
values sk.K/, k D 1; 2; : : : , as the eigenvalues of the non-negative compact operator
jKj D .K�K/1=2 � 0 in H ordered in a non-increasing way and with multiplicities
taken into account. If

P1
kD1 sk.K/ < 1, we say that K belongs to the trace class

and de�ne its trace as

TrK ´
1X

kD1
�k.K/;

where �k.K/ are the eigenvalues of K repeated with their algebraic multiplicities.
Note also that the series in the de�nition of the trace converges absolutely.

Let us also de�ne some auxiliary maps associated with partial differential equa-
tions. For the sake of brevity, we introduce the spaces

H
3=2
� .�˙/ ´ ¹u˙ 2 H 3=2.�˙/W�u˙ 2 L2.�˙/º: (3)

For any u˙ 2 H 3=2
� .�˙/ its Neumann trace @�˙u˙j† exists as a function in L2.†/;

see, e.g., §2.7.3 of [43]. For every � 2 C n RC (where RC ´ Œ0;1/) and every
' 2 L2.†/ the boundary value problems

��u˙ D �u˙ in �˙;

@�˙u˙
ˇ̌
†

D ' on †;

have unique solutions u�;˙.'/ 2 H 3=2
� .�˙/; see, e.g., §2.7.3 of [43]. The operator-

valued functions � 7! M˙.�/, � 2 C n RC, are then de�ned as

M˙.�/WL2.†/ �! L2.†/; M˙.�/' ´ u�;˙.'/j†:
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For �xed � 2 C n RC the operators M˙.�/ are the Neumann–to–Dirichlet maps
for the differential expression �� � � on the domains �˙. The operators M˙.�/
are compact and injective and their inverses are called Dirichlet–to–Neumann maps.
Recently, there has been a considerable growth of interest in the investigation of these
maps (see, e.g., [3], [4], and [25]), in particular also with the aim to derive spec-
tral properties of the corresponding partial differential operators (see, e.g., [2], [13],
and [31]).

Further, we de�ne the following operator-valued functions � 7! zM.�/; yM.�/,
� 2 C n RC, by

zM.�/ ´ .MC.�/�1 CM�.�/�1/�1; yM.�/ ´ MC.�/CM�.�/: (4)

We should mention that for every � 2 C n RC the operator MC.�/�1 C M�.�/�1

is invertible and therefore zM.�/ is well de�ned. Moreover, zM.�/ and yM.�/ are
compact operators in L2.†/ for every � 2 C n RC; see Propositions 3.2 and 3.8
of [10]. It is worth mentioning that zM.�/ and the inverse of yM.�/ appear naturally
in the theory of boundary integral operators. They are used in the treatment of partial
differential equations from both analytical [45] and computational [48] viewpoints.
The operator-valued function zM.�/ was successfully applied to the spectral analysis
of the operator H˛;† in quite a few papers; see, e.g., [27], [28], [30], [41], and the
survey paper [26].

1.2 Statement of the main results

In the �rst main result of this note we obtain a trace formula for the resolvent power
difference of the operators H˛;† and Hfree.

Theorem 1.2. Let the self-adjoint operators Hfree and H˛;† with ˛ 2 L1.†IR/ be
as in De�nition 1.1, and let the operator-valued function zM be as in (4). Then for all
m 2 N such that m > .d�2/=2 and all � 2 �.H˛;†/ the resolvent power difference

zD˛;m.�/ ´ .H˛;† � �/�m � .Hfree � �/�m

belongs to the trace class, and its trace can be expressed as

Tr. zD˛;m.�// D 1

.m � 1/Š
Tr
�

d
m�1

d�m�1 ..I � ˛ zM.�//�1˛ zM 0.�//
�
:

In the secondmain result of this note we obtain trace formulae for the resolvent power
differences of the pairs of operators ¹K!;†;KNº and ¹K!;†;Hfreeº.
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Theorem 1.3. Let the self-adjoint operatorsHfree,KN, andK!;† with! 2 L1.†IR/
be as in De�nition 1.1, and let the operator-valued function yM be as in (4). Then the
following statements hold.

(i) For all m 2 N such that m > .d�2/=2 and all � 2 �.K!;†/ the resolvent power
difference

yE!;m.�/ ´ .K!;† � �/�m � .KN � �/�m

belongs to the trace class, and its trace can be expressed as

Tr. yE!;m.�// D 1

.m � 1/Š Tr
�

d
m�1

d�m�1 ..I � ! yM.�//�1! yM 0.�//
�
:

(ii) For all m 2 N such that m > .d�1/=2 and all � 2 �.K!;†/ the resolvent power
difference

yD!;m.�/ ´ .K!;† � �/�m � .Hfree � �/�m

belongs to the trace class, and its trace can be expressed as

Tr. yD!;m.�// D 1

.m � 1/Š Tr
�

d
m�1

d�m�1 ..I � ! yM.�//�1 yM.�/�1 yM 0.�//
�
:

We remark that it is also implicitly shown that the derivatives of the operator-valued
functions appearing in the trace formulae exist in a suitable sense and that these
derivatives belong to the trace class.

The main ingredients used in the proofs, which are given in Section 3, are Krein-
type resolvent formulae, properties of weak Schatten–von Neumann classes, asymp-
totics of eigenvalues of the Laplace–Beltrami operator on†, and elements of elliptic
regularity theory. We point out that for the proof of Theorem 1.3 (ii) an auxiliary trace
formula for the resolvent power differences of Hfree and KN is derived in Lemma 3.4.
This trace formula is also of certain independent interest. We also mention that a
similar strategy of proof was employed in our previous paper [12] where we proved
trace formulae for generalized Robin Laplacians.

2 Preliminaries

This section consists of �ve subsections. In Subsection 2.1 we recall the notion of
weak Schatten–von Neumann classes and their connection with the trace class, and
in Subsection 2.2 we collect certain formulae that involve derivatives of holomor-
phic operator-valued functions. Next, in Subsection 2.3 we recall the de�nitions of
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quasi boundary triples and associated  -�elds and Weyl functions. Krein’s resolvent
formulae and suf�cient conditions for self-adjointness of extensions are discussed
in Subsection 2.4. Finally, in Subsection 2.5 we introduce speci�c quasi boundary
triples, which are used to parameterize Schrödinger operators with singular interac-
tions from De�nition 1.1.

2.1 Sp;1-classes and the trace mapping

Let H and K be Hilbert spaces. Denote by S1.H;K/ the class of all compact op-
erators KWH ! K. Recall that, for p > 0, the weak Schatten–von Neumann ideal
Sp;1.H;K/ is de�ned by

Sp;1.H;K/ ´ ¹K 2 S1.H;K/W sk.K/ D O.k�1=p/; k ! 1º:
Often we just write Sp;1 instead ofSp;1.H;K/. For 0 < p0 < p the inclusion

Sp0;1 � Sp;1 (5)

holds, and for s; t > 0 one has

S1=s;1 � S1=t;1 D S1=.sCt/;1; (6)

where a product of operator ideals is de�ned as the set of all products of operators.
We refer the reader to §III.7 and §III.14 of [33] and Chapter 2 of [47] for a detailed
study of the classes Sp;1; see also Lemma 2.3 in [11]. If K 2 Sp;1 with p < 1,
then K belongs to the trace class. It is well known (see, e.g., §III.8 [33]) that, for
trace class operatorsK1; K2, the operatorK1CK2 is also in the trace class, and that

Tr.K1 CK2/ D TrK1 C TrK2: (7)

Moreover, if K1 2 B.H;K/ and K2 2 B.K;H/ are such that both products K1K2
and K2K1 are in the trace class, then

Tr.K1K2/ D Tr.K2K1/: (8)

The next useful lemma is a special case of Lemma 4.7 in [11] and is based on the
asymptotics of the eigenvalues of the Laplace–Beltrami operator. For a smooth com-
pact manifold † we denote the usual L2-based Sobolev spaces byH r .†/, r � 0.

Lemma 2.1. Let† be a .d �1/-dimensional compact C1-manifold without bound-
ary, letK be a Hilbert space and letK 2 B.K; L2.†// with ranK � H r .†/, where
r > 0. Then K is compact and K 2 Sd�1

r ;1.
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2.2 Derivatives of holomorphic operator-valued functions

In the following we shall often use product rules for holomorphic operator-valued
functions. LetHi , i D 1; : : : ; 4, be Hilbert spaces, U a domain in C and let

AWU �! B.H3;H4/; B WU �! B.H2;H3/; C WU �! B.H1;H2/

be holomorphic operator-valued functions. Then for � 2 U we have

d
m

d�m
.A.�/B.�// D

X

pCqDm
p;q�0

�
m

p

�
A.p/.�/B.q/.�/; (9a)

d
m

d�m
.A.�/B.�/C.�// D

X

pCqCrDm
p;q;r�0

mŠ

pŠ qŠ rŠ
A.p/.�/B.q/.�/C .r/.�/: (9b)

If A.�/�1 is invertible for every � 2 U, then relation (9a) implies the following
formula for the derivative of the inverse,

d

d�
.A.�/�1/ D �A.�/�1A0.�/A.�/�1: (10)

2.3 Quasi boundary triples, Weyl functions and -�elds

We begin this subsection by recalling the abstract concept of quasi boundary triples
introduced in [8] as a generalization of the notion of (ordinary) boundary triples,
see [16] and [40]. For the theory of ordinary boundary triples and associated Weyl
functions the reader may consult, e.g., [17], [21], and [22]. Recent developments on
quasi boundary triples and their applications to PDEs can be found in, e.g., [9], [11],
[12], and [13].

De�nition 2.2. Let S be a closed, densely de�ned, symmetric operator in a Hilbert
space .H; .�; �/H/. A triple ¹G; �0; �1º is called a quasi boundary triple for S� if
.G; .�; �/G/ is a Hilbert space, and for some linear operator T � S� with xT D S� the
following assumptions are satis�ed:

(i) �0; �1W domT ! G are linear mappings, and the mapping � ´ �
�0

�1

�
has dense

range in G � G;

(ii) A0 ´ T � ker�0 is a self-adjoint operator inH;



136 J. Behrndt, M. Langer, and V. Lotoreichik

(iii) for all f; g 2 domT the abstract Green identity holds:

.Tf; g/H � .f; Tg/H D .�1f; �0g/G � .�0f; �1g/G:

Next, we recall the de�nitions of the  -�eld and the Weyl function associated with a
quasi boundary triple ¹G; �0; �1º for S�. Note that the decomposition

domT D domA0 u ker.T � �/

holds for all � 2 �.A0/, so that �0 � ker.T � �/ is injective for all � 2 �.A0/.
The (operator-valued) functions  andM de�ned by

.�/ ´ .�0 � ker.T � �//�1 and M.�/ ´ �1.�/; � 2 �.A0/;
are called the  -�eld and theWeyl function corresponding to the quasi boundary triple
¹G; �0; �1º. The adjoint of . N�/ has the following representation:

. N�/� D �1.A0 � �/�1; � 2 �.A0/I (11)

see Proposition 2.6 (ii) in [8] and also Proposition 6.13 in [9]. According to Proposi-
tion 2.6 in [8] the operator-valued functions � 7! .�/, � 7! . N�/�, and � 7! M.�/

are holomorphic on �.A0/. Finally, we recall formulae for their derivatives: for
k 2 N, ' 2 ran�0 and � 2 �.A0/ we have

 .k/.�/' D kŠ.A0 � �/�k.�/'; (12a)

d
k

d�k
.. N�//� D kŠ . N�/�.A0 � �/�k; (12b)

M .k/.�/' D kŠ . N�/�.A0 � �/�.k�1/.�/'I (12c)

see Lemma 2.4 in [12].

2.4 Self-adjoint extensions and abstract Krein’s resolvent formula

In this subsection we parameterize subfamilies of self-adjoint extensions via quasi
boundary triples and provide a couple of useful Krein-type formulae for resolvent
differences of these extensions.

The following hypothesis will be convenient in the following.

Hypothesis 2.3. Let S be a closed, densely de�ned, symmetric operator in a Hilbert
space H and let ¹G; �0; �1º be a quasi boundary triple for S� such that ran�0 D G.
Moreover, let  andM be the associated  -�eld and Weyl function, respectively.
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We remark that the quasi boundary triple ¹G; �0; �1º in Hypothesis 2.3 is also
a generalized boundary triple in the sense of [22]. In this case the  -�eld and the
Weyl function associated with ¹G; �0; �1º are de�ned on the whole space G, and the
formulae (12a) and (12c) are valid for all ' 2 G.

Next, we state a Krein-type formula for the resolvent difference of

Aj ´ T � ker�j ; j D 0; 1:

Proposition 2.4 (Theorem 2.5 in [12]). Assume that Hypothesis 2.3 is satis�ed and
that A1 is self-adjoint inH. Then the formula

.A0 � �/�1 � .A1 � �/�1 D .�/M.�/�1. N�/�

holds for all � 2 �.A0/ \ �.A1/.

In the next proposition, we formulate a suf�cient condition for self-adjointness of
the extension of A de�ned by

AŒB� ´ T � ker.B�1 � �0/;
and provide a Krein-type formula for the resolvent difference of AŒB� and A0.

Proposition 2.5 (Theorem 2.6 in [12]). Assume that Hypothesis 2.3 is satis�ed, that
M.�0/ 2 S1.G/ for some �0 2 �.A0/, and that B 2 B.G/ is self-adjoint in G. Then
the extension AŒB� of A is self-adjoint inH, and the formula

.AŒB� � �/�1 � .A0 � �/�1 D .�/.I � BM.�//�1B. N�/�

holds for all � 2 �.AŒB�/ \ �.A0/. In this formula the middle term satis�es

.I � BM.�//�1 2 B.G/

for all � 2 �.AŒB�/ \ �.A0/.

2.5 Quasi boundary triples for coupled problems

We recall particular quasi boundary triples, which are used to parameterize the self-
adjoint operators from De�nition 1.1. Furthermore, we reformulate some of the
abstract statements from Subsections 2.3 and 2.4 for these quasi boundary triples.

First, we introduce the subspace H
3=2
� .Rd n†/ of L2.Rd / by

H
3=2
� .Rd n†/ ´ H

3=2
� .�C/˚H

3=2
� .��/;
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where H
3=2
� .�˙/ are as in (3). Further, to shorten the notations, we also de�ne the

jump of the normal derivative by

Œ@�u�† ´ @�CuCj† C @��u�j†;

for u 2 H
3=2
� .Rd n †/. Following the lines of Section 3 in [10], we de�ne the

operators zT and yT in L2.Rd / by

zT u ´ .��uC/˚ .��u�/; dom zT ´ ¹u 2 H 3=2
� .Rd n†/W Œu�† D 0º;

yT u ´ .��uC/˚ .��u�/; dom yT ´ ¹u 2 H 3=2
� .Rd n†/W Œ@�u�† D 0º;

and their restrictions zS and yS by

zS ´ zT � ¹u 2 H 3=2
� .Rd n†/Wu˙j† D 0; Œ@�u�† D 0º;

yS ´ yT � ¹u 2 H 3=2
� .Rd n†/W @�˙u˙j† D 0; Œu�† D 0º:

It can be veri�ed that zS (respectively, yS) is the restriction of Hfree to functions, whose
Dirichlet trace (respectively, Neumann trace) vanishes on †. In particular, as a con-
sequence of this identi�cation we arrive at the inclusions dom zS; dom yS � H 2.Rd /.
It can also be shown that the operators zS and yS are closed, densely de�ned, and
symmetric in L2.Rd / and that the closures of zT and yT coincide with zS� and yS�,
respectively. Furthermore, we de�ne the boundary mappings by

z�0; z�1W dom zT ! L2.†/; z�0u ´ Œ@�u�†; z�1u ´ uj†;
y�0; y�1W dom yT ! L2.†/; y�0u ´ @�CuCj†; y�1u ´ Œu�†: (13)

The identities

Hfree D zT � ker z�0 D yT � ker y�1 and KN D yT � ker y�0
can be checked in a straightforward way. According to Proposition 3.2 (i) in [10]
the triple z… ´ ¹L2.†/; z�0; z�1º is a quasi boundary triple for zS�, and by Proposi-
tion 3.8 (i) in [10] the triple y… ´ ¹L2.†/; y�0; y�1º is a quasi boundary triple for yS�.

De�nition 2.6. Let Q , zM and O , yM be the  -�elds and the Weyl functions of the
quasi boundary triples z… and y…, respectively.

Remark 2.7. The de�nitions of the operator-valued functions � 7! zM.�/ and
� 7! yM.�/ as Neumann–to–Dirichlet maps in (4) and as Weyl functions of the
quasi boundary triples z… and y… are equivalent; see Propositions 3.2 (iii) and 3.8 (iii)
in [10].
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Remark 2.8. According to Propositions 3.2 (ii) and 3.8 (ii) in [10], for any '2L2.†/
both transmission boundary value problems

8
<̂

:̂

��u D �u in R
d n†;

Œu�† D 0 on †;

Œ@�u�† D ' on †;

8
<̂

:̂

��u D �u in R
d n†;

@�CuCj† D ' on †;

@��u�j† D �' on †;

have unique solutions Qu�.'/; Ou�.'/ 2 H 3=2
� .Rd n†/. Moreover, the operator-valued

functions Q and O satisfy Q.�/' D Qu�.'/ and O.�/' D Ou�.'/ for ' 2 L2.†/ and
� 2 C n RC.

Thanks to (11) the adjoints of Q. N�/ and O. N�/ can be expressed as

Q. N�/� D z�1.Hfree � �/�1 and O. N�/� D y�1.KN � �/�1 (14)

for � 2 C n RC. We also remark that, by Propositions 3.2 (iii) and 3.8 (iii) in [10],
we have

ran zM.�/ D ran yM.�/ D H 1.†/; � 2 C n RC: (15)

According to Proposition 2.4, the formula

.KN � �/�1 � .Hfree � �/�1 D O.�/ yM.�/�1 O. N�/� (16)

holds for all � 2 C n RC. Since the operators of multiplication with ˛ and ! are
bounded and self-adjoint in L2.†/, by Proposition 2.5 the extensions

zT � ker.˛z�1 � z�0/ and yT � ker.! y�1 � y�0/

are self-adjoint in L2.Rd /. In a way similar to [10], one can check that these re-
strictions coincide with H˛;† and K!;†, respectively. Moreover, by Proposition 2.5,
the formulae

.H˛;† � �/�1 � .Hfree � �/�1 D Q.�/.I � ˛ zM.�//�1˛ Q. N�/�; (17a)

.K!;† � �/�1 � .KN � �/�1 D O.�/.I � ! yM.�//�1! O. N�/�; (17b)

hold for all � 2 �.H˛;†/ and all � 2 �.K!;†/, respectively. In these formulae the
middle terms on the right-hand sides satisfy

.I � ˛ zM.�//�1; .I � ! yM.�//�1 2 B.L2.†// (18)

for � in the respective resolvent sets.
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3 Proofs of the main results

In this section we prove the main results of the paper: the trace formulae for the
Schrödinger operators with singular interactions. Theorems 1.2 and 1.3 are proved
in Subsections 3.1 and 3.2, respectively. Throughout this section we use the notations

R.�/ ´ .Hfree � �/�1 and RN.�/ ´ .KN � �/�1:

3.1 Proof of Theorem 1.2

To prove Theorem 1.2 we need an auxiliary lemma.

Lemma 3.1. Let the  -�eld Q and the Weyl function zM be as in De�nition 2.6. Then
for every � 2 C n RC and every k 2 N0 the following relations hold:

(i) Q .k/.�/; d
k

d�k
Q. N�/� 2 S.d�1/=.2kC3=2/;1 ;

(ii) zM .k/.�/ 2 S.d�1/=.2kC1/;1 .

Proof. (i) Let � 2 C n RC and k 2 N0. We observe that ran.R.�/k/ � H 2k.Rd /.
By the trace theorem we have uj† 2 H s�1=2.†/ for every u 2 H s.Rd /with s > 1=2.
Hence, we obtain from (14) that

ran. Q. N�/�R.�/k/ � H 2kC3=2.†/:

Thus Lemma 2.1 with K D L2.Rd / and r D 2k C 3=2 implies that

Q. N�/�R.�/k 2 S.d�1/=.2kC3=2/;1 : (19)

By taking the adjoint in (19) and replacing � by N� we obtain

R.�/k Q.�/ 2 S.d�1/=.2kC3=2/;1 : (20)

From (12a), (12b), (19), and (20) we obtain (i).

(ii) For k D 0 we observe that by (15) we have ran zM.�/ D H 1.†/. Therefore,
Lemma 2.1 with K D L2.†/ and r D 1 implies that zM.�/ 2 Sd�1;1. For k � 1

we derive from (12c) that

zM .k/.�/ D kŠ Q. N�/�R.�/k�1 Q.�/ 2 S.d�1/=.2.k�1/C3=2/;1 � S.d�1/=.3=2/;1
D S.d�1/=.2kC1/;1;

where we applied (19), (20), and (6).
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Proof of Theorem 1.2. In order to shorten notation and to avoid the distinction of
several cases, we set

Ar ´
8
<
:
S.d�1/=r;1.L2.†// if r > 0;

B.L2.†// if r D 0:

It follows from (6) and the fact thatSp;1.L2.†// is an ideal inB.L2.†// for p > 0
that

Ar1 � Ar2 D Ar1Cr2 ; r1; r2 � 0: (21)

The remainder of the proof is divided into two steps.

Step 1. Let ˛ 2 L1.†IR/ and set
zT .�/ ´ .I � ˛ zM.�//�1; � 2 �.H˛;†/;

where zT .�/ 2 B.L2.†// by (18). Next, we show that

zT .k/.�/ 2 A2kC1; k 2 N; (22)

by induction. Relation (10) implies that

zT 0.�/ D zT .�/ ˛ zM 0.�/ zT .�/; (23)

which is in A3 by Lemma 3.1 (ii). Let m 2 N and assume that (22) is true for every
k D 1; : : : ; m, which implies, in particular, that

zT .k/.�/ 2 A2k ; k D 0; : : : ; m: (24)

Then

zT .mC1/.�/ D d
m

d�m
. zT .�/ ˛ zM 0.�/ zT .�//

D
X

pCqCrDm
p;q;r�0

mŠ

pŠ qŠ rŠ
zT .p/.�/ ˛ zM .qC1/.�/ zT .r/.�/

by (23) and (9b). Relation (24), the boundedness of ˛, Lemma 3.1 (ii) and (21) imply
that

zT .p/.�/ ˛ zM .qC1/.�/ zT .r/.�/ 2 A2p � A2.qC1/C1 � A2r D A2.mC1/C1;

since p C q C r D m. This shows (22) for k D m C 1 and hence, by induction,
for all k 2 N. Since zT .�/ 2 B.L2.†//, we have, in particular,

zT .k/.�/ 2 A2k ; k 2 N0; � 2 �.H˛;†/: (25)
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Step 2. By taking derivatives we obtain from (17a) that, for m 2 N,

.m � 1/Š zD˛;m.�/ D d
m�1

d�m�1 . zD˛;1.�//

D d
m�1

d�m�1 . Q.�/ zT .�/ ˛ Q. N�/�/

D
X

pCqCrDm�1
p;q;r�0

.m � 1/Š
pŠ qŠ rŠ

Q .p/.�/ zT .q/.�/ ˛ d
r

d�r
Q. N�/�:

(26)

By Lemma 3.1 (i) and (25), each term in the sum satis�es

Q .p/.�/ zT .q/.�/ ˛ d
r

d�r
Q. N�/� 2 A2pC3=2 � A2q � A2rC3=2 D A2mC1

D S.d�1/=.2mC1/;1:
(27)

If m 2 N is such that m > .d�2/=2, then .d�1/=.2mC1/ < 1 and, by (5) and (27), all
terms in the sum in (26) are trace class operators, and the same is true if we change the
order in the product in (27). Hence, we can apply the trace to the expression in (26)
and use (7), (8), and (12c) to obtain

.m � 1/Š Tr. zD˛;m.�//

D Tr
� X

pCqCrDm�1
p;q;r�0

.m � 1/Š
pŠ qŠ rŠ

Q .p/.�/ zT .q/.�/ ˛ d
r

d�r
Q. N�/�

�

D
X

pCqCrDm�1
p;q;r�0

.m � 1/Š
pŠ qŠ rŠ

Tr
�

Q .p/.�/ zT .q/.�/ ˛ d
r

d�r
Q. N�/�

�

D
X

pCqCrDm�1
p;q;r�0

.m � 1/Š
pŠ qŠ rŠ

Tr
�

zT .q/.�/ ˛
�

d
r

d�r
Q. N�/�

�
Q .p/.�/

�

D Tr
� X

pCqCrDm�1
p;q;r�0

.m � 1/Š
pŠ qŠ rŠ

zT .q/.�/ ˛
�

d
r

d�r
Q. N�/�

�
Q .p/.�/

�

D Tr
�

d
m�1

d�m�1 . zT .�/ ˛ Q. N�/� Q.�//
�

D Tr
�

d
m�1

d�m�1 . zT .�/ ˛ zM 0.�//
�
;

which �nishes the proof.
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3.2 Proof of Theorem 1.3

First, we need three preparatory lemmas. The proof of the �rst of them is completely
analogous to the proof of Lemma 3.1 and is therefore omitted.

Lemma 3.2. Let the  -�eld O and the Weyl function yM be as in De�nition 2.6. Then
for every � 2 C n RC and every k 2 N0 the following relations hold:

(i) O .k/.�/; d
k

d�k
O. N�/� 2 S.d�1/=.2kC3=2/;1 ;

(ii) yM .k/.�/ 2 S.d�1/=.2kC1/;1 .

Lemma 3.3. Let the  -�eld O and the Weyl function yM be as in De�nition 2.6. Then
for all s � 0, and all � 2 C n RC the following statements hold:

(i) ran. O. N�/� � H s.Rd // � H sC3=2.†/;

(ii) ran. yM.�/ � H s.†// D H sC1.†/.

Proof. (i) According to (14) we have

O. N�/� D y�1RN.�/:

Employing the regularity shift property (Theorem 4.20 in [45]) and the trace theorem
(Theorem 3.37 in [45]) we conclude that

ran. O. N�/� � H s.Rd // � H sC3=2.†/

holds for all s � 0.

(ii) De�ne the space H s.Rd n †/ ´ H s.�C/˚H s.��/. It follows from the
decomposition

dom yT D domKN u ker. yT � �/; � 2 C n RC;

and the properties of the Neumann trace (§2.7.3 in [43]) that the restriction of the
mapping y�0 to

ker. yT � �/ \H sC3=2.Rd n†/
is a bijection ontoH s.†/ for s � 0. This, together with the de�nition of the  -�eld,
implies that

ran. O.�/ � H s.†// D ker. yT � �/ \H sC3=2.Rd n†/ � H sC3=2.Rd n†/:
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Hence, it follows from the de�nition of yM.�/, the de�nition of y�1 in (13) and the
trace theorem that

ran. yM.�/ � H s.†// � H sC1.†/:

To verify the opposite inclusion, let  2 H sC1.†/. The decomposition

dom yT D domHfree u ker. yT � �/; � 2 C n RC;

implies that there exists a function f� 2 ker. yT � �/ \ H sC3=2.Rd n †/ such that
y�1f� D  . Thus,

y�0f� D ' 2 H s.†/ and yM.�/' D  ;

that is,H sC1.†/ � ran. yM.�/ � H s.†//, and the assertion is shown.

Lemma 3.4. Let the self-adjoint operators Hfree and KN be as in De�nition 1.1, and
let the operator-valued function yM be as in (4). Then for all m 2 N such that
m > .d�1/=2 and all � 2 C n RC the resolvent power difference

yDm.�/ ´ .KN � �/�m � .Hfree � �/�m

belongs to the trace class, and its trace can be expressed as

Tr. yDm.�// D 1

.m � 1/Š
Tr
�

d
m�1

d�m�1 . yM.�/�1 yM 0.�//
�
:

Proof. The proof is divided into three steps.

Step 1. Let us introduce the operator-valued function

S.�/ ´ yM.�/�1 O. N�/�; � 2 C n RC:

Note that the product is well de�ned since by Lemma 3.3 (i)

ran. O. N�/�/ � H 1.†/ D dom. yM.�/�1/:

The closed graph theorem implies that S.�/2B.L2.Rd /; L2.†// for all �2CnRC.
Next we prove the following smoothing property for the derivatives of S :

ran.S .k/.�/ � H s.Rd // � H sC2kC1=2.†/; s � 0; k 2 N0; (28)

by induction. Since, by Lemma 3.3 (i), O. N�/� maps H s.Rd / into H sC3=2.†/ for
all s � 0 and yM.�/�1 maps H sC3=2.†/ into H sC1=2.†/ by Lemma 3.3 (ii),
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relation (28) is true for k D 0. Now let l 2 N0 and assume that (28) is true for every
k D 0; 1; : : : ; l . It follows from (9a), (10), (12b), (12c), and (16) that for � 2 CnRC,

S 0.�/ D d

d�
. yM.�/�1/ O. N�/� C yM.�/�1

d

d�
O. N�/�

D � yM.�/�1 yM 0.�/ yM.�/�1 O. N�/� C yM.�/�1 O. N�/�RN.�/

D � yM.�/�1 O. N�/� O.�/ yM.�/�1 O. N�/� C yM.�/�1 O. N�/�RN.�/

D S.�/ŒRN.�/ � O.�/ yM.�/�1 O. N�/��
D S.�/R.�/:

Hence, with the help of (9a) we obtain

S .lC1/.�/ D d
l

d�l
.S.�/R.�//

D
X

pCqDl
p;q�0

�
l

p

�
S .p/.�/R.q/.�/

D
X

pCqDl
p;q�0

lŠ

pŠ
S .p/.�/R.�/qC1:

(29)

Using the induction hypothesis, formula (29) and smoothing properties of R.�/,
we deduce that, for p; q � 0, p C q D l ,

ran.S .p/.�/R.�/qC1 � H s.Rd // � ran.S .p/.�/ � H sC2.qC1/.Rd //

� H sC2.pCqC1/C1=2.†/

D H sC2.lC1/C1=2.†/;

which shows (28) for k D l C 1 and hence, by induction, for all k 2 N0. Therefore,
an application of Lemma 2.1 with K D L2.†/ and r D 2k C 1=2 yields that

S .k/.�/ 2 S.d�1/=.2kC1=2/;1; k 2 N0; � 2 C n RC: (30)
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Step 2. Using Krein’s formula in (16) and (9a) we obtain that, for m 2 N and
� 2 C n RC,

yDm.�/ D 1

.m� 1/Š
� d

m�1

d�m�1 . yD1.�// (31)

D 1

.m� 1/Š
� d

m�1

d�m�1 . O.�/S.�//

D 1

.m� 1/Š

X

pCqDm�1
p;q�0

�
m � 1
p

�
O .p/.�/S .q/.�/: (32)

By Lemma 3.2 (i), (30), and (6) we have

O .p/.�/S .q/.�/ 2 S.d�1/=.2pC3=2/;1 � S.d�1/=.2qC1=2/;1 D S.d�1/=.2.pCq/C2/;1
D S.d�1/=.2m/;1

(33)

for p; q with p C q D m � 1.
Step 3. If m > .d�1/=2, then .d�1/=.2m/ < 1 and, by (33), each term in the sum
in (32) is a trace class operator and, by a similar argument, also S .q/.�/ O .p/.�/.
Hence, the resolvent power difference yDm.�/ is a trace class operator, and we can
apply the trace to (32) and use (7), (8), and (12c) to obtain

.m � 1/ŠTr. yDm.�// D Tr

� X

pCqDm�1
p;q�0

�
m � 1
p

�
O .p/.�/ S .q/.�/

�

D
X

pCqDm�1
p;q�0

�
m � 1
p

�
Tr. O .p/.�/ S .q/.�//

D
X

pCqDm�1
p;q�0

�
m � 1
p

�
Tr.S .q/.�/ O .p/.�//

D Tr

� X

pCqDm�1
p;q�0

�
m � 1
p

�
S .q/.�/ O .p/.�/

�

D Tr
�

d
m�1

d�m�1 .S.�/ O.�//
�
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D Tr
�

d
m�1

d�m�1 . yM.�/�1 O. N�/� O.�//
�

D Tr
�

d
m�1

d�m�1 . yM.�/�1 yM 0.�//
�
;

which �nishes the proof.

Proof of Theorem 1.3. (i) The proof of this statement is fully analogous to the proof
of Theorem 1.2. One has to replace in the argument Hfree, ˛, H˛;†, zM , Q , by KN,
!, K!;†, yM , O , respectively. Moreover, Krein’s resolvent formula in (17b) is used
instead of Krein’s formula in (17a) and Lemma 3.2 instead of Lemma 3.1.

(ii) By item (i) of this theorem and by Lemma 3.4, for every m 2 N such that
m > .d�1/=2 and every � 2 �.K!;†/ both operators yDm.�/ and yD!;m.�/ belong to
the trace class. In view of the identity yE!;m.�/ D yDm.�/C yD!;m.�/, we infer that
yE!;m.�/ is also in the trace class. Using the formula (7) we have

Tr. yE!;m.�// D Tr. yD!;m.�//C Tr. yDm.�//:

Combining the trace formula in (i) of this theorem and the trace formula in Lemma 3.4
we obtain

Tr. yE!;m.�// D 1

.m � 1/Š Tr
�

d
m�1

d�m�1 ..I� ! yM.�//�1! yM 0.�/C yM.�/�1 yM 0.�//
�

D 1

.m � 1/Š Tr
�

d
m�1

d�m�1 ..I� ! yM.�//�1 yM.�/�1 yM 0.�//
�
;

which �nishes the proof.
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of the Brezis–Nirenberg problem in Hn
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To Pavel Exner on the occasion of his 70th birthday

1 Introduction

For a long time virial theorems have played a key role in the localization of linear
and nonlinear eigenvalues. In the spectral theory of Schrödinger Operators, the virial
theorem has been widely used to prove the absence of positive eigenvalues for various
multiparticle quantum systems (see, e.g., [12], [10], and [1]). In 1983, Brézis and
Nirenberg [4] considered the existence and nonexistence of solutions of the nonlinear
equation

��u D �uC jujp�1u;

de�ned on a bounded, smooth domain of Rn, n > 2, with Dirichlet boundary con-
ditions, where p D .nC2/=.n�2/ is the critical Sobolev exponent. In particular, they
used a virial theorem, namely the Pohozaev identity [8], to prove the nonexistence of
regular solutions when the domain is star–shaped, for any � � 0, for any n > 2. After
the classical paper [4] of Brézis and Nirenberg, many people have considered exten-
sions of this problem in different settings. In particular, the Brézis–Nirenberg (BN)
problem has been studied on bounded, smooth, domains of the hyperbolic space Hn

(see, e.g., [11], [2], [6], and [3]), where one replaces the Laplacian by the Laplace–
Beltrami operator inHn. Stapelkamp [11] proved the analog of the above mentioned
nonexistence result of Brézis–Nirenberg in Hn. Namely she proved that there are no
regular solutions of the BN problem for bounded, smooth, star–shaped domains in
Hn (n > 2), if � � n.n�2/=4. The purpose of this manuscript is to give an improved
bound on � for the nonexistence of (not necessarily positive) radial, regular solutions
of the BN problem on geodesic balls of Hn for 2 < n < 4 (see Theorem 2.1 below).
Notice that for the case of radial solutions of the BN problem on a geodesic ball one
can consider noninteger values of n, which can be considered just as a parameter.
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Consider the Brezis–Nirenberg problem

��Hnu D �uC jujp�1u; (1)

on � � Hn; where � is smooth and bounded, with Dirichlet boundary conditions,
i.e., u D 0 in @�. After expressing the Laplace–Beltrami operator �Hn in terms of
the conformal Laplacian, Stapelkamp [11] proved that (1) does not admit any regular
solution for star-shaped domains � provided

� � n.n � 2/
4

: (2)

Here, we consider the BN problem (1) for radial solutions on geodesic balls of Hn.
We can prove a different bound, namely the problem for radial solutions on a geodesic
ball �� does not admit a solution if

� � n2.n � 1/
4.nC 2/

(3)

for n > 2. Our bound is better than (2) in the radial case, if 2 < n < 4: Both bounds
coincide when n D 4. In the rest of this manuscript we give the proof of (3).

2 Nonexistence of solutions of the BN problem on geodesic

balls in H
n, for 2 < n < 4.

In the sequel we consider (not necessarily positive) radial solutions of the BN prob-
lem (1) on geodesic balls of Hn. In radial coordinates, (1) can be written as

� u00.x/ � .n � 1/ coth.x/u0.x/ D �u.x/C jujp�1u.x/; (4)

with u0.0/ D u.R/ D 0, where R is the radius of the geodesic ball. Here, as before,
p D .nC2/=.n�2/. Notice that (4) makes sense also if n is not an integer. For that
reason henceforth we consider n 2 R, with 2 < n < 4. Our main result is the
following

Theorem 2.1. The Boundary Value problem (1), with u0.0/ D u.R/ D 0, has no
regular solutions if

� � n2.n � 1/
4.nC 2/

;

for 2 < n < 4.
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Remark 2.2. Notice that our bound n2.n�1/=.4.nC2// is strictly bigger than n.n�2/=4
for n < 4. Notice, on the other hand, that Stapelkamp’s bound holds for all regular
solutions, while our improved bound only holds for regular radial solutions. We do
not know whether our bound is optimal, i.e., we do not know if there are solutions for
� > n2.n�1/=.4.nC2//. In view of [3], there can be no positive solutions if � < �.n/

(see [3] for the de�nition of �.n/). It is important to notice that for n D 4, we have
that,

n.n � 2/

4
D n2.n � 1/

4.nC 2/
D �.4/;

so at least our result is optimal as n ! 4.

Proof. We use a Rellich–Pohozaev argument ([9] and [8]). Multiplying equation (4)
by u.x/ sinhn�1.x/ and integrating, we obtain

�
ˆ R

0

u00.x/.u.x/ sinhn�1.x//dx � .n � 1/
ˆ R

0

u.x/u0.x/ cosh.x/ sinhn�2.x/dx

D �

ˆ R

0

u2 sinhn�1.x/dx C
ˆ R

0

ju.x/jpC1 sinhn�1.x/dx:

Integrating the �rst term by parts, we can write this equation as
ˆ R

0

u02 sinhn�1.x/dx D �

ˆ R

0

u2 sinhn�1.x/dx C
ˆ R

0

jujpC1 sinhn�1.x/dx: (5)

Now let

G.x/ D
ˆ x

0

sinhn�1.s/ds:

Multiplying equation (4) by u0G and integrating, we obtain

�
ˆ R

0

�u02

2

�0
Gdx � .n � 1/

ˆ R

0

coth.x/u02Gdx

D �

ˆ R

0

�u2
2

�0
Gdx C

ˆ R

0

� jujpC1

p C 1

�0
Gdx:

After integrating by parts, and since G.0/ D 0; we obtain

u02.R/G.R/
2

C
ˆ R

0

u02
�
.n� 1/G coth.x/ � G0

2

�
dx

D �

ˆ R

0

u2

2
G0dx C 1

p C 1

ˆ R

0

jujpC1
G0dx:

(6)
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Substituting equation (5) into equation (6), and since 1=2 � 1=.pC1/ D 1=n, it follows
that

ˆ R

0

u0 2
�
.n� 1/G coth.x/ � G0

2
� G0

p C 1

�
dx C u02.R/G.R/

2

D �

n

ˆ R

0

u2 sinhn�1.x/dx:

Notice that in equation (7) we have written sinhn�1.x/ as G0.x/: Thus, since the
boundary term is positive, and since 1=2 C 1=.pC1/ D .n�1/=n; we have

� �
n.n � 1/

ˆ R

0

u02
�
G coth.x/ � G0

n

�
dx

ˆ R

0

u2G0dx
: (7)

Now let

L.x/ D G coth.x/ � G0

n
:

Then L � 0: In fact, we can write

L.x/ D m.x/

sinh.x/
;

where

m.x/ D G cosh.x/ � sinhn.x/

n
:

Then, since G.0/; we have m.0/ D 0. Also,

m0.x/ D G sinh.x/CG0 cosh.x/ � sinhn�1.x/ cosh.x/ D G sinh.x/:

It follows that m0 � 0; and therefore that L � 0:

We now use a Hardy type inequality to write the denominator integral in terms
of u02. For a review on Hardy’s inequalities see, e.g., [7] and [5]. Integrating by
parts, we can write

ˆ R

0

u2G0dx D �2
ˆ R

0

.u sinh.n�1/=2.x//
� Gu0

sinh.n�1/=2.x/

�
dx:

Then, using Cauchy–Schwarz, it follows that
�
ˆ R

0

u2G0dx
�2

� 4

ˆ R

0

u2G0dx
ˆ R

0

G2u02

G0 dx:
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That is,
ˆ R

0

u2G0dx < 4
ˆ R

0

u02G2

G0 dx: (8)

Using inequality (8) in the quotient (7), we conclude that

� >

n.n � 1/
ˆ R

0

u02
�
G coth.x/ � G0

n

�
dx

4

ˆ R

0

u02G2

G0 dx

:

In the Lemma 2.3 below, we show that

L.x/ � c
G2

G0 ;

where

c D n

nC 2
:

With this, we conclude that

� >
n2.n � 1/
4.nC 2/

:

Lemma 2.3. Let x � 0 and let

L.x/ D G coth.x/ � G0

n
:

Then

L.x/ � n

.nC 2/

G2

G0 :

Here, as above,

G.x/ D
ˆ x

0

sinhn�1.s/ds:

Proof. Let

f .x/ D L.x/G0.x/ � cG2.x/;
where

c D n

nC 2
:

It suf�ces to show that f � 0:
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As before, we write

L.x/ D m.x/

sinh.x/
;

where

m.x/ D G cosh.x/ � sinhn.x/

n

and
m0.x/ D G sinh.x/:

Then,
f .x/ D sinhn�2.x/m.x/ � c G2.x/:

Notice that since sinh.0/ D G.0/ D 0, one has that f .0/ D 0, so it suf�ces to show
that f 0 � 0. We have that

f 0.x/ D sinhn�3.x/..n � 2/ cosh.x/m.x/CG sinh2.x/.1� 2c//:

Let � D 2c � 1 D 1=p; where p D .nC2/=.n�2/ is the critical Sobolev exponent, and
let g.x/ D .n�2/ cosh.x/m.x/��G sinh2.x/. It suf�ces to show that g � 0: Since
m.0/ D 0; then g.0/ D 0:

Also,

g0.x/ D 2 sinh.x/ cosh.x/G.x/.n � 2 � �/ � sinhnC1.x/
� .n � 2/

n
C �

�

and in particular g0.0/ D 0. Since

n � 2� � D .n� 2/.nC 1/

.nC 2/

and
.n � 2/
n

C � D 2.nC 1/.n � 2/
n.nC 2/

we can write

g0.x/ D 2.nC 1/.n� 2/

n.nC 2/
sinh.x/ ŒnG cosh.x/ � sinhn.x/� :

Finally, let h.x/ D nG cosh.x/� sinhn.x/: If we show h.x/ � 0, then we will have
g0 � 0, which will imply g � 0, and thus, that f � 0; as desired. Notice that
h.0/ D 0: Also, since G0.x/ D sinhn�1.x/; we have

h0.x/ D nG sinh.x/:

That is, h0 � 0; which concludes the proof of Lemma 2.3.
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Remark 2.4. In the proof of Lemma 2.3, the constant � D 1=p plays a crucial role,
where p is the critical Sobolev exponent. It is worth noting that for small x and g as
in the proof above,

g.x/ D xnC2
� 1
np

� �

n

�
C O.xnC4/:

It follows that if � � 1=p; then g is positive in a neighborhood of the origin. It was
this observation that led us to realize that � D 1=p would yield the optimal estimate.
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Twisted waveguide with a Neumann window

Philippe Briet and Hiba Hammedi

Dedicated to Pavel Exner on the occasion of his 70th birthday

1 Introduction

In this work, we would like to study the in�uence of a geometric twisting on trapped
modes which occur in certain waveguides. Here the waveguide consists in a straight
tubular domain �0 WD R � ! having a Neumann window on its boundary @�0.

The cross section ! is supposed to be an open bounded connected subset of R2

of diameter d > 0 which is not rotationally invariant. Moreover ! is supposed to
have smooth boundary @!.

It can be shown that the Laplace operator associated to such a straight tube has
bound states [8].

Let us introduce some notations. Denote by N the Neumann window. It is an
open bounded subset of the boundary @�0. Let D be its complement set in @�0.
When N is an annulus of size l > 0 we will denote it by,

Aa.l/ WD Ia.l/ � @!; Ia.l/ WD .a; l C a/; a 2 R:

Consider �rst the self-adjoint operator HN
0 associated to the following quadratic

form. Let D.QN/ D ¹ 2 H1.�0/ j  dD D 0º and for  2 D.QN/,

QN. / D
ˆ

�0

jr j2dx;

i.e., the Laplace operator de�ned on �0 with Neumann boundary conditions (NBC)
on N and Dirichlet boundary conditions (DBC) on D, see [5] and [11].

It is actually shown in Section 2 of this paper that ifN contains an annulus of size
l large enough thenHN

0 has at least one discrete eigenvalue. In fact it is proved in [8]
that this holds true if N contains an annulus of any size l > 0.

The question we are interested in is the following: is it possible that the discrete
spectrum ofHN

0 disappears when we apply a geometric twisting on the guide? This
question is motivated by the results of [6] and [10], where it is shown that this phe-
nomenon occurs in some bent tubes when they are subjected to a twisting de�ned
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from an angle function � having a derivative P� with a compact support. In this paper
we consider the situation described above which is very different from the one of [6]
and [10].

Let us now de�ne the twisting (see [4] and [7]). Choose � 2 C 1c .R/ and introduce
the diffeomorphism

LW�0 �! R
3;

.s; t2; t3/ 7�! .s; t2 cos �.s/ � t3 sin �.s/; t2 sin �.s/C t3 cos �.s//:

The twisted tube is given by �� WD L.�0/. Let

D.QN
� / D ¹ 2 H1.��/ j  dL.D/ D 0º

and consider the following quadratic form

QN
� . / WD

ˆ

��

jr j2dx;  2 D.QN
� /:

Through unitary equivalence, we then have to consider

qN� . / WD QN
� . oL

�1/ D kr 0 k2 C k@s C P�@� k2; (1)

for  2 D.qN
�
/ WD ¹ 2 H1.�0/ j  dD D 0º and where

r 0 WD t .@t2 ; @t3/; @� WD t2@t3 � t3@t2 :

Denote by HN
�

the associated self-adjoint operator. It is de�ned as follows (see [5]
and [11]). Let

D.HN
� / D

°
 2 D.qN� /

ˇ̌
ˇ HN

�  2 L2.�0/; @ 
@n

dN D 0
±
;

with

HN
�  D .��! � . P�@� C @s/

2/ ; (2)

where the transverse Laplacian �! WD @2t2 C @2t3 . If N D Aa.l/; l > 0, we will
denote these forms respectively asQl

�
; ql
�
and the corresponding operator asH l

�
and

if N D ; we denote the associated operator byH� .

Then the main result of this paper is the following one.
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Theorem 1.1. i) Under conditions stated above on ! and � , there exists

lmin WD lmin.!; d/ > 0

such as if for some a 2 R and l > lmin, N � Aa.l/ then

�d .H
N
� / ¤ ;:

ii) Suppose � is a non zero function satisfying the same conditions as in i) and
has a bounded second derivative. Then there exists

dmax WD dmax.�; !/ > 0

such that for all 0 < d � dmax there exists

lmax WD lmax.!; d; �/

such as for all 0 < l � lmax, if N � Aa.l/ and supp. P�/\ Ia.l/ D ; for some a 2 R

then
�d .H

N
� / D ;:

Roughly speaking this result implies that for d small enough, the discrete spec-
trum disappears when the width of the Neumann window decreases.

Let us describe brie�y the content of the paper. In Section 2 we give the proof of
Theorem 1.1 i). Section 3 is devoted to the proof of the second part of Theorem 1.1;
this proof needs several steps. In particular we �rst establish a local Hardy inequality.
This allows us to reduce the problem to the analysis of a one dimensional Schrödinger
operator from which Theorem 1.1 ii) follows. Finally in the Appendix of the paper
we give partial results we use in previous sections.

2 Existence of bound states

First we prove the following. Denote by E1; E2; : : : the eigenvalues (transverse
modes) of the Laplacian ��! de�ned on L2.!/ with DBC on @!. Let �

1
; �
2
; : : :

be the associated eigenfunctions. Then we have

Proposition 2.1. �ess.H
N
�
/ D ŒE1;1/.

Proof. We know that �.H� / D ŒE1;1/ see, e.g., [2]. But by usual arguments [12],
HN
�

� H� , then
ŒE1;1/ � �ess.H

N
� /:
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Let a0 2 R and l 0 > 0 large enough such that N � Aa0.l 0/ D Ia0 .l 0/ � @! and
supp. P�/ � Ia0 .l 0/. Let zH l 0

�
be the operator de�ned as in (2) but with additional

Neumann boundary conditions on ¹a0º �! [ ¹a0 C l 0º �!. SoHN
�

� zH l 0
�
and then

�ess.H
N
�
/ � �ess. zH l 0

�
/, see [12].

But zH l 0
�

D zHi ˚ zHe. The interior operator zHi is the corresponding operator
de�ned on L2.Ia0.l 0/ � !/ with NBC on ¹a0º � ! [ ¹a0 C l 0º � ! [ N and DBC
elsewhere on Aa0.l 0/. By general arguments of [12] it has only discrete spectrum
consequently �ess. zH l 0

�
/ D �ess. zHe/.

Now the exterior operator zHe is de�ned on L2..�1; a0/�![ .a0 C l 0;1/�!/
with DBC on .�1; a0/�@![.a0 C l 0;1/�@! and NBC on ¹a0º�![¹a0 C l 0º�!.
Since � D 0 for x < a0 and x > a0 C l 0, it is easy to see that

zHe D
M

n�1
.�@2 CEn/.�n; �/�n:

Hence �. zHe/ D �ess. zHe/ D ŒE1;C1/.

Theorem 1.1 i) follows from

Proposition 2.2. Under the conditions of Theorem 1.1 i), there exists

lmin WD lmin.!; d/ > 0

such as for all l > lmin we have

�d .H
l
� / ¤ ;:

Proof. Let 'l;a be the function

'l;a.s/ WD

8
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂:

10

l
.s � a/ on Œa; aC l=10/,

1 on ŒaC l=10; aC 9l=10/,

�10
l
.s � l � a/ on ŒaC 9l=10; aC l/,

0 elsewhere.

It is easy to see that 'l;a 2 D.ql
�
/ and k'l;ak2 D 13l=15 j!j. Let us calculate

ql� .'l;a/ �E1k'l;ak2 D kr 0'l;ak2 C k P�@�'l;a C @s'l;ak2 �E1k'l;ak2: (3)
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Evidently the �rst term on the right hand side of (3) is zero. For the second term on
the right hand side of (3) we get,

k P�@�'l;a C @s'l;ak2 D k@s'l;ak2 D 20

l
j!j:

Then

ql� .'l;a/ � E1k'l;ak2 D j!j
�20
l

� 13l

15
E1

�

and thus if l � lmin WD p
300=.13E1/ we have ql� .'l;a/ � E1k'l;ak2 � 0

Proof of Theorem 1.1 i). Using the same notation as in Theorem 1.1 i), HN
�

� H l
�
.

Moreover these operators have the same essential spectrum, then by the min–max
principle the assertion follows.

3 Absence of bound state

In this section we want to prove the second part of Theorem 1.1. De�ne

�m D inf.supp. P�//;

�M D sup.supp. P�//
and

L D �M � �m:
Here L > 0. We �rst consider the case where the Neumann window is an annulus,

Aa.l/ D Ia.l/ � !:
Proposition 3.1. Suppose Aa.l/ is such that a � �M . Assume that the conditions
of Theorem 1.1 ii) hold. Then there exists dmax WD dmax.!; �/ > 0, such that for all
0 < d � dmax there exists lmax.d; �; !/ > 0 such as for all 0 < l � lmax we have

�d .H
l
� / D ;:

Remark 3.2. The case where lCa � �m follows from the same arguments developed
below.

This proof is based on the fact that under conditions of Proposition 3.1, for every
 2 D.ql

�
/ it holds that

Q. / WD ql� . / �E1k k2 � 0: (4)

The proof of (4) involves several steps.
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3.1 A local Hardy inequality

The aim of this paragraph is to show a Hardy type inequality needed for the proof of
Proposition 3.1. It is the �rst step of the proof of (4). Let g be the function

g.s/ WD
´
0 on Ia.l/;

E1 elsewhere.
(5)

Choose p 2 .�m; �M / such that P�.p/ 6D 0 and let

�.s/ WD
8
<
:

1

1C .s � p/2
on .�1; p�;

0 elsewhere.
(6)

Proposition 3.3. Under the same conditions of Proposition 3.1, then there exists a
constant C > 0 depending on p and ! and P� such that for any  2 D.ql

�
/,

kr 0 k2 C k P�@� C @s k2 �
ˆ

�0

g.s/j j2dsdt � C

ˆ

�0

�.s/j j2dsdt: (7)

We �rst show the following lemma. De�ne �p WD .�1; p/� !.

Lemma 3.4. Under same conditions of the Proposition 3.3. Then for any 2 D.ql
�
/

we have
ˆ

�p

jr 0 j2 C j P�@� C @s j2 � E1j j2dsdt � C

ˆ

�p

�.s/j j2dsdt:

In the following we will use notations suggested in [6]. For A � R denote by �
A

the characteristic function of A � !. Let  2 D.ql
�
/ and de�ne,

qA1 . / WD k�
A

r 0 k2 �E1k�A k2; qA2 . / WD k�
A
@s k2;

qA3 . / WD k�
A

P�@� k2; qA2;3. / WD 2Re.@s ; �A
P�@� /;

and
QA. / D qA1 . /C qA2 . /C qA3 . /C qA2;3. /:

Here and hereafter we often use the fact that for any  2 D.ql
�
/,

qA1 . / � 0; (8)

for every A � R such that A \ Ia.l/ D ;.
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Proof. Choose r > 0 such that P�.s/ ¤ 0 for any s 2 Œp � r; p�. Let f be the
following function:

f .s/ WD

8
ˆ̂<
ˆ̂:

0 on .p;1/,
p � s
r

on .p � r; p�,
1 elsewhere.

For any  2 D.ql
�
/, simple estimates lead to

ˆ

�p

j .s; t /j2
1C .s � p/2

dsdt D
ˆ

�p

j .s; t /f .s/C .1 � f .s// .s; t /j2
1C .s � p/2 dsdt

� 2

�
ˆ

�p

jf .s/ .s; t /j2
.s � p/2 dsdt C k�

.p�r;p/ k2
�
:

Since f .p/ .p; �/ D 0, we can use the usual Hardy inequality (see, e.g., [9]),
then we get

ˆ

�p

j .s; t /j2
1C .s � p/2 dsdt � 8q

.�1;p/
2 .f  /C 2k�

.p�r;p/ k2: (9)

Note that with our choice Œp � r; p�\ Œa; aC l� D ;. Hence to estimate the second
term on the right hand side of (9) we use Theorem 6:5 of [10], then there exists
�0 D �0. P�; p; r/ > 0 such that for any  2 D.ql

�
/ we have

k�
.p�r;p/ k2 � 1

�0
Q.p�r;p/. / � 1

�0
Q.�1;p/. /: (10)

We now want to estimate the �rst term on the right hand side of (9). We have

q
.�1;p/
2 .f  / D

ˆ

�p

j@s.f  /j2dsdt D q
.�1;�m/
2 .f  /C q

.�m;p/
2 .f  /:

Evidently since P� D 0 and f D 1 in .�1; �m/, from (8), we have

q
.�1;�m/
2 .f  / � Q.�1;�m/. /: (11)

In the other hand since f .p/ .p; �/ D 0, we can apply Lemma A.1 of the Appendix.
So for any 0 < ˛ < 1 there exists ˛;1 > 0 such that

jq.�m;p/
2;3 .f  /j � ˛;1q

.�m;p/
1 .f  /C ˛q

.�m;p/
2 .f  /C q

.�m;p/
3 .f  /:
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Let  WD max.1; ˛;1/. Then

�1jq.�m;p/
2;3 .f  /j � q

.�m;p/
1 .f  /C ˛�1q.�m;p/

2 .f  /C �1q.�m;p/
3 .f  /: (12)

Hence with the decomposition, q.�m;p/
2;3 D �1q.�m;p/

2;3 C .1 � �1/q.�m;p/
2;3 and (12)

we have

Q.�m;p/.f  / � .1� �1/.q.�m;p/
2 .f  /C q

.�m;p/
2;3 .f  /C q

.�m;p/
3 .f  //

C �1.1� ˛/q
.�m;p/
2 .f  /

and since q.�m;p/
3 C q

.�m;p/
2;3 C q

.�m;p/
2 � 0, we arrive at

q
.�m;p/
2 .f  / � 

.1 � ˛/Q
.�m;p/.f  /:

Now by q.�m;p/
1 .f  / � q

.�m;p/
1 . / and

k�
.�m;p/

.@s C P�@� /.f  /k2 � 2
�
k�
.�m;p/

.@s C P�@� / k2 C 1

r2
k�
.p�r;p/ k2

�
;

and by (10) we get

q
.�m;p/
2 .f  / � 2

.1� ˛/
�
Q.�m;p/. /C 1

�0r2
Q.p�r;p/. /

�

� c0Q.�m;p/. /;

(13)

with

c0 D 2

.1� ˛/

�
1C 1

�0r2

�
:

Then (11) and (13) imply

q
.�1;p/
2 .f  / � .1C c0/Q.�1;p/. /: (14)

Hence, with

C�1 D 8.1C c0/C 2

�0
; (15)

inequalities (14) and (10) prove the lemma.

Proof of Proposition 3.3. To prove the proposition we note that for any  2 D.ql
�
/

and for p0 2 R we have
ˆ

!

ˆ 1

p0
jr 0 j2 C j P�@� C @s j2dsdt �

ˆ

!

ˆ 1

p0
g.s/j j2dsdt: (16)

Then (16) with p0 D p and Lemma 3.4 imply (7).
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3.2 Reduction to a one dimensional problem

We now want to prove the following result.

Proposition 3.5. Under conditions of Proposition 3.1, a suf�cient condition in order
to get (4) is given by

ˆ

R

j 0.s/j2 C 2C�.s/j .s/j2ds � 4E1

ˆ aCl

a

j .s/j2ds � 0;

for any  2 H1.R/ where the constant C is de�ned in (15).

Remark 3.6. This proposition means that the positivity needed here is given by the
positivity of the effective one dimensional Schrödinger operator on L2.R/,

� d2

ds2
C 2C�.s/ � 4E11Ia.l/: (17)

where 1Ia.l/ is the characteristic function of Ia.l/.

Proof. Evidently we have

Q. / D 1

2

�
Q. / �

ˆ

�0

.E1 � g.s//j j2dsdt C ql�. / �
ˆ

�0

g.s/j j2dsdt
�
;

where g is de�ned in (5). By using (7), then

Q. / � 1

2

�
ql�. / � E1k k2 C C

ˆ

�0

�.s/j j2dsdt � E1k�.a;aCl/ k2
�

(18)

Rewrite the expression of ql
�
given by (1) as follows:

ql�. / D kr 0 k2 C k@s k2 C k P�@� k2 C 2Re.@s ; P�@� /: (19)

We estimate the last term of the right hand side of (19). By using the formula (23) of
the Appendix,

jq2;3. /j D jq.�m;�M /
2;3 . /j

� 
1=2;1=2

q
.�m;�M /
1 . /C 1

2
q
.�m;�M /
2 . /C 1

2
q
.�m;�M /
3 . /

(20)

where


1=2;1=2
WD Q

1=2;1=2
C 4d2k P�k21
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with

Q
1=2;1=2

WD max
°dk P�k1k R�k1

p
f .L/

P�0
p
�

;
d2k R�k21f .L/

� P�02
; 2d2k R�k21f .L/

±

for some constant � > 0 depending only on the section ! and

f .L/ WD max
°
2C 16L2

r2
; 4L2

±
:

Hence (19) together with (20) give

ql� . / � kr 0 k2 C 1

2
k@s k2 C 1

2
k P�@� k2 � 

1=2;1=2
q
.�m;�M /
1 . /: (21)

In view of (8) we have

kr 0 k2 � E1k k2 � q
.�m;�M /
1 . /C q

Ia.l/
1 . /

� q
.�m;�M /
1 . / � E1k�.a;aCl/ k2:

Thus this last inequality together with (21) in (18) gives

Q. / � 1

2

�1
2

k@s k2 C 1

2
k P�@� k2 C C

ˆ

�0

�.s/j j2dsdt

� 2E1k�.a;lCa/ k2 C .1� 
1=2;1=2

/q
.�m�M /
1 . /

�
:

Now if 0 < d � dmax then 1=2;1=2
� 1 so Proposition 3.5 follows.

3.3 The one dimensional Schrödinger operator

We want to show, under our conditions, that the one dimensional Schrödinger oper-
ator (17) is a positive operator. In view of Proposition 3.5 this will imply the Propo-
sition 3.1. Here we follow a similar strategy as in [1].

Proposition 3.7. for all ' 2 H1.R/, then there exists lmax > 0 such that for any
0 < l � lmax we have

ˆ

R

j'0.s/j2 C 2C�.s/j'.s/j2ds � 4E1

ˆ

Ia.l/

j'.s/j2ds:

Proof. Introduce the function

ˆ.s/ WD

8
<̂

:̂

��
2

C arctan .s � p/
�

if s < p,

�

2
if s � p.
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where p is the same real number as in (6). So clearly ˆ0 D �. For any t 2 Ia.l/ and
' 2 H1.R/, we have

�

2
'.t/ D ˆ.t/'.t/ D

ˆ t

�1
.ˆ.s/'.s//0ds

D
ˆ t

�1
�.s/'.s/ds C

ˆ t

�1
ˆ.s/'0.s/ds

and since �.s/ D 0 for any s 2 .p;1/, we get,

�

2
'.t/ D

ˆ p

�1
�.s/'.s/ds C

ˆ t

�1
ˆ.s/'0.s/ds:

Then some straightforward estimates lead to,

�2

4
'2.t / � 2

��
ˆ p

�1
�.s/'.s/ds

�2
C
�
ˆ t

�1
ˆ.s/'0.s/ds

�2 �

� 2

�
ˆ p

�1
�.s/ds

ˆ p

�1
�.s/'2.s/ds C

ˆ t

�1
ˆ2.s/ds

ˆ t

�1
'02.s/ds

�
:

By direct calculation
ˆ p

�1
�.s/ds D �

2

and
ˆ p

�1
ˆ2.s/ds C

ˆ t

p

ˆ2.s/ds D � ln 2C �2

4
.t � p/:

Hence we get

j'.t/j2 � 4

�

ˆ

R

�.s/'2.s/ds C
�8 ln 2
�

C 2.t � p/
�ˆ

R

j'0.s/j2ds: (22)

We integrate both sides of (22) over Ia.l/, then
ˆ

Ia.l/

j'.t/j2dt

� 4l

�

ˆ

R

�.s/'2.s/ds C
��8 ln 2

�
C 2.a � p/

�
l C l2

�ˆ

R

j'0.s/j2ds

� c00
ˆ

R

2C�.s/'2.s/C j'0.s/j2ds

where

c00 D 2l
� 1

�C
C 4 ln 2

�
C a � p

�
C l2:
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Finally we get

4E1

ˆ lCa

a

j'.t/j2dt � 4E1c
00
ˆ

R

2C�.s/j'.s/j2 C j'0.s/j2ds:

So choose 0 < l � lmax with

lmax WD �
� 1

�C
C 4 ln 2

�
C a � p

�
C
r� 1

�C
C 4 ln 2

�
C a � p

�2
C .4E1/�1

then 4E1c00 � 1 and Proposition 3.7 follows.

Proof of Theorem 1.1 ii). Under assumptions of Theorem 1.1 ii), HN
�

� H l
�
, these

two operators have the same essential spectrum so Theorem 1.1 ii) is proved by
applying Proposition 3.1 and the min–max principle.

Appendix

In this appendix we give a slight extension of Lemma 3 of [6] which states that under
our conditions, for all 2 D.ql

�
/we have for any ˛; ˇ > 0 that there exists ˛;ˇ > 0

such that
jq2;3. /j � ˛;ˇq1. /C ˛q2. /C ˇq3. /: (23)

Then we have

Lemma A.1. Let p 2 .�m; �M /. For all  2 D.ql
�
/ such that  .p; �/ D 0, then for

any ˛; ˇ > 0 there exists ˛;ˇ > 0 such that

jq.�m;p/
2;3 . /j � ˛;ˇq

.�m;p/
1 . /C ˛q

.�m;p/
2 . /C ˇq

.�m;p/
3 . /: (24)

Proof. Let  2 D.ql
�
/ such that  .p; �/ D 0. Then  2 H1

0.�p/. We know that we
may �rst consider vectors  .s; t / D �

1
.t /�.s; t /, where � 2 C1

0 .�p/. For such a
vector  we have

q
.�m;p/
1 . / D k�

.�m;p/
�
1
r 0�k2;

q
.�m;p/
2 . / D k�

.�m;p/
�
1
@s�k2;

q
.�m;p/
3 . / D k�

.�m;p/
P�.�

1
@�� C �@��1/k2;
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and

q
.�m;p/
2;3 . / D 2. P��

.�m;p/
�
1
@��; �1@s�/C 2. P��

.�m;p/
�@��1; �1@s�/: (25)

By using simple estimates the �rst term on the right hand side of (25) is estimated as

j2. P��
.�m;p/

�
1
@��; �1@s�/j � 2k P�k1k�

.�m;p/
�
1
r 0�kk�

.�m;p/
�
1
@s�k;

then
j2. P��

.�m;p/
�
1
@��; �1@s�/j � c1q

.�m;p/
1 . /C ˛

2
q
.�m;p/
2 . /; (26)

where

c1 WD 2

˛
d2k P�k21

and ˛ > 0.
Integrating by parts twice and using the fact that P�.�m/ D �.p; �/ D 0, the second

term of the right hand side of (25) is written as

2. P��
.�m;p/

�@��1; �1@s�/ D .�
.�m;p/

R���
1
; �
1
@��/: (27)

Then the Cauchy–Schwartz inequality implies,

j.�
.�m;p/

R���
1
; �
1
@��/j2 � d2k R�k21q.�m;p/

1 k�
.�m;p/

�
1
�k2:

Let p0 2 R and r 0 > 0 such that .p0 � r; p0/ � .�m; p/ and for s 2 .p0 � r; p0/,
j P�.s/j � P�0 for some P�0 > 0. As in the proof of Lemma 3 of [6] we have

k�
.�m;p/

�
1
�k2 � c2.q

.�m;p/
2 . /C P��2

0 k�
.p0�r;p0/

P��
1
�k2/ (28)

where

c2 WD max
°
2C 16

.p � �m/
2

r2
; 4.p � �m/2

±
:

Moreover, for any s 2 R, P�.s/�
1
�.s; �/ 2 H1

0.�p/, then by using Lemma 1 of [6]
there exists � > 0 depending on ! such that

k�
.p0�r;p0/

P��
1
�k2 � k�

.�m;p/
P��
1
�k2 � ��1.q.�m;p/

3 . /C k P�k21q.�m;p/
1 . //:

(29)
Hence (28), (29), and (27) give

j.�
.�m;p/

R���
1
; �
1
@��/j2 � .c3q

.�m;p/
1 . /C ˛

2
q
.�m;p/
2 . /Cˇq

.�m;p/
3 . //2; (30)

where

c3 WD max
°dk R�k1k P�k1

p
c2

P�0
p
�

;
d2k R�k21c2

˛
;
d2k R�k21c2
2ˇ P�20�

±
:

Then (26) and (30) imply (24) with ˛;ˇ WD c1 C c3.
Note that we can choose �

1
> 0 on !. So that (24) holds for every  2 C1

0 .�p/

and by a density argument this is even true for  2 H1
0.�p/.
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[7] P. Exner and H. Kovařík, Spectrum of the Schrödinger operator in a per-
turbed periodically twisted tube. Lett. Math. Phys. 73 (2005), no. 3, 183–192.
MR 2188292 Zbl 1111.35014

[8] H. Hammedi, Analyse spectrale des guides d’ondes “twistés.” Thèse de doc-
torat de Mathématique, Université de Toulon, Toulon, 2016.

[9] G. H. Hardy, Note on a theorem of Hilbert.Math. Z. 6 (1920), no. 3-4, 314–317.
MR 1544414 JFM 47.0207.01

http://www.ams.org/mathscinet-getitem?mr=2136194
http://zbmath.org/?q=an:1077.81038
http://www.ams.org/mathscinet-getitem?mr=2799119
http://zbmath.org/?q=an:1241.81055
http://www.ams.org/mathscinet-getitem?mr=3357986
http://zbmath.org/?q=an:1327.35458
http://www.ams.org/mathscinet-getitem?mr=2560302
http://zbmath.org/?q=an:1195.35119
http://www.ams.org/mathscinet-getitem?mr=1946021
http://zbmath.org/?q=an:1041.81027
http://www.ams.org/mathscinet-getitem?mr=2385742
http://zbmath.org/?q=an:1167.35026
http://www.ams.org/mathscinet-getitem?mr=2188292
http://zbmath.org/?q=an:1111.35014
http://www.ams.org/mathscinet-getitem?mr=1544414
http://zbmath.org/?q=an:47.0207.01


Twisted waveguide with a Neumann window 175
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Example of a periodic Neumann waveguide

with a gap in its spectrum

Giuseppe Cardone and Andrii Khrabustovskyi

This paper is dedicated to Pavel Exner on the occasion of his jubilee.

1 Introduction

It is a well-known fact (see, e.g., [13]) that the spectrum of periodic elliptic self-
adjoint differential operators has band structure, i.e., it is a locally �nite union of
compact intervals called bands. In general the bands may overlap, otherwise we
have a gap in the spectrum - a bounded open interval having an empty intersection
with the spectrum, but with ends belonging to it.

The presence of gaps in the spectrum is not guaranteed. For instance, the spectrum
of the Laplace operator in L2.Rn/ has no gaps: �.��Rn/ D Œ0;1/. Therefore an
interesting question arises here: to construct examples of periodic operators with
non-void spectral gaps. This question is motivated by various applications, since
the presence of gaps is important for the description of wave processes which are
governed by differential operators under consideration: if thewave frequency belongs
to a gap, then the corresponding wave cannot propagate in themedium. This feature is
a main requirement for so-called photonic crystals, which are materials with periodic
dielectric structure extensively investigating in recent years.

The problem of existence of spectral gaps for various periodic operators has been
actively studied since mid 1990s. We refer to the overview [11], where one can �nd
a lot of examples and references around this topic.

In recent years there have appeared many works in which the problem of opening
of spectral gaps for operators posed in unbounded domains with a waveguide geom-
etry (strips, tubes, graph-like domains, etc.) is studied, see, e.g., [1], [2], [4], [5], [8],
[14], [15], [16], and [17]. The studies of physical processes (e.g., quantum particle
motion) in such domains are of a great physical and mathematical interest because
of the extensive progress in microelectronics during the last decade. We refer to the
recent monograph [7] concerning spectral properties of quantum waveguides.
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Figure 1. The waveguide �"

The simplest way to open up a gap is either to perturb a straight cylinder by a
periodic nucleation of small voids (or making other “small” perturbation), see [1]
and [15], or to consider a waveguide consisting of an array of identical compact do-
mains connected by narrow “bridges,” see [14] and [16]. In the �rst case one has
small gaps separating large bands, in the second case one gets large gaps and small
bands.

In the current paper we present another example of Neumann waveguide with a
gap in the spectrum; the geometry of this waveguide essentially differs from previ-
ously studied examples. We are motivated by our recent work [3], where the spec-
trum of some Neumann problem was studied in a bounded domain perturbed by a
lot of identical protuberances each of them consisting of two subsets - “room” and
“passage” (in the simplest case, “room” is a small square and “passage” is a nar-
row rectangle connecting the “room” with the main domain). Peculiar spectral prop-
erties of so perturbed domains were observed for the �rst time by R. Courant and
D. Hilbert [6]. Domains with “room-and-passage”-like geometry are widely used in
order to construct examples illustrating various phenomena in Sobolev spaces theory
and in spectral theory (see, for example, [9] and [10]).

Our goal is to show that perturbing a straight strip by a periodic array of “room-
and-passage” protuberances one may open a spectral gap. Namely, we consider a
strip of a width L > 0 and perturb it by a family of small identical protuberances,
"-periodically distributed along the strip axis. Here " > 0 is a small parameter. Each
protuberance has “room-and-passage” geometry. We denote the obtained domain by
�" (see Figure 1). In�" we consider the operator A" D ��"��" , where��" is the
Neumann Laplacian in L2.�"/. The weight �" is equal to 1 everywhere except the
union of the “rooms”, where it is equal to the constant %" > 0.

The main result: we will prove that under suitable assumptions onL; %" and sizes
of “rooms” and “passages” the spectrum ofA" converges to the spectrum of a certain
spectral problem on the initial strip containing the spectral parameter in boundary
conditions. Its spectrum has the form Œ0;1/ n .˛; ˇ/, where .˛; ˇ/ is a non-empty
bounded interval. This, in particular, implies at least one gap in the spectrum of A"

for small enough ".
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2 Setting of the problem and main result

In what follows by x and x D .x1; x2/ we denote the Cartesian coordinates inR and
R2, correspondingly.

By " we denote a small parameter. To simplify the proof of the main theorem we
suppose that it takes values from the discrete set E D ®

"W "�1 2 N
¯
. The general case

needs slight modi�cations.
We consider the unbounded strip � � R2 of the width L > 0:

� D ®
x 2 R

2W �L < x2 < 0
¯
:

By � we denote its upper boundary: � D ®
x 2 R2W x2 D 0

¯
:

Let b", d ", h" be positive constants, B be an open bounded domain in R2 having
Lipschitz boundary and satisfying

B �
°
x 2 R

2W x1 2
�

� 1

2
;
1

2

�
; x2 > 0

±
; (1)

there exists R 2 .0; 1/ such that ¹x 2 R
2W x1 2 .�R=2;R=2/; x2 D 0º � @B; (2)

R�1d " � b" � "; (3)

h" �! 0 as " ! 0:

For i 2 Z we set:

B"i D
°
x 2 R

2W 1
b"
.x � Qxi;"/ 2 B; where Qxi;" D

�
i"C "

2
; h"

�±
; (“room”)

T "i D
°
x 2 R

2W
ˇ̌
ˇx1 � i" � "

2

ˇ̌
ˇ < d "

2
; 0 � x2 � h"

±
: (“passage”)

Conditions (1)–(3) imply that the “rooms” are pairwise disjoint and guarantee correct
gluing of the i -th “room” and the i -th “passage” (the upper face of T "i is contained in
@B"i ). Moreover, the distance between the neighbouring “passages” is not too small,
namely for i 6D j one has dist.T "i ; T

"
j / � " � d " � " .1 �R/.

Attaching the “rooms” and “passages” to � we obtain the perturbed domain

�" D � [
�[

i2Z
.T "i [ B"i /

�
:

Let us de�ne accurately the operator A". We denote by H " the Hilbert space of
functions from L2.�"/ endowed with a scalar product

.u; v/H" D
ˆ

�"

u.x/v.x/.�".x//�1dx; (4)
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where the function �".x/ is de�ned as follows:

�".x/ D

8
<̂

:̂

1; x 2 �[
� S
i2Z

T "i

�
;

%"; x 2 S
i2Z

B"i ;
%" > 0 is a constant.

By a" we denote the sesquilinear form in H " de�ned by

a"Œu; v� D
ˆ

�"

ru � rvdx; dom.a"/ D H 1.�"/: (5)

The form a" is densely de�ned, closed, positive and symmetric. We denote byA" the
operator associated with this form, i.e.,

.A"u; v/H" D a"Œu; v�; for all u 2 dom.A"/; v 2 dom.a"/:

In other words, the operator A" is de�ned by the operation ��"� in �" and the
Neumann boundary conditions on @�".

The goal of this work is to describe the behaviour of the spectrum �.A"/ as " ! 0

under the assumption that the following limits exist and are positive:

˛ WD lim
"!0

d "%"

h".b"/2jBj ; r WD lim
"!0

.b"/2jBj
"%"

; ˛ > 0; r > 0: (6)

Also it is supposed that d " tends to zero not very fast, namely lim"!0 " ln d " D 0:

The meaning of this condition and the meaning of ˛ and r are explained in [3].

Now, we introduce the limit operator. ByH we denote the Hilbert space of func-
tions from L2.�/˚ L2.�/ endowed with the scalar product

.U; V /H D
ˆ

�

u1.x/v1.x/dx C
ˆ

�

u2.x/v2.x/r dx; U D .u1; u2/; V D .v1; v2/:

(7)

We introduce the sesquilinear form a in H by

aŒU; V � D
ˆ

�

ru1 � rv1dx C
ˆ

�

˛r.u1j� � u2/.v1j� � v2/dx (8)

with dom.a/ D H 1.�/ ˚ L2.�/. Here by uj� we denote the trace of u on � .
We denote by A the self-adjoint operator associated with this form.
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Formally, the eigenvalue equation AU D �U can be written as follows:
8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

��u1 D �u1 in �;

@u1

@n
D ˛r.u2 � u1/ on �;

˛.u2 � u1/ D �u2 on �;

@u1

@n
D 0 on @� n �:

Here n is the outward-pointing unit normal.

Remark 2.1. Spectral properties of so-de�ned operators A were investigated in [3]
and [12]. In [3] one considered the case of a bounded domain �, � is a �at subset of
@�. In this case the discrete spectrum of A consists of two sequences; one sequence
accumulates at 1, while the other one converges to ˛, which is the only point of the
essential spectrum.

In [12] one considered, in particular, the case, when � is a straight unbounded
strip, the line � is parallel to its axis and divides � on two unbounded strips (in this
case the condition @u1=@un D ˛.u2�u1/ becomes

�
@u1=@un

� D ˛.u2�u1/, where Œ��
denotes the jump of the enclosed quantity across �). In this case the spectrum of
A turns out to be a union of the interval Œ0; ˛� and the ray Œˇ;1/, where ˇ > ˛

provided ˛ < .�=.2.L�L� ///
2. Here L is strip width and L� 2 .0; L/ is a distance

from � to @�. Let us note that, in fact, in [12] one deals with the Dirichlet conditions
on @�, but the Neumann case can be treated similarly – see Remark 3.2 in [12].

Using the same arguments as in [12] we arrive at the following formula for the
spectrum of our operator A:

�.A/ D
´
Œ0; ˛�[ Œˇ;1/ if ˛ < .�=.2L//2;

Œ0;1/ otherwise;
(9)

where the number ˇ is de�ned as follows. We denote by ˇ.�/ (here � 2 R) the
smallest eigenvalue of the problem

�u00 D �u in .�L; 0/;
u0.0/ D �u.0/;

u0.�L/ D 0:

It is straightforward to show that the function � 7! ˇ.�/ is continuous, monotoni-
cally decreasing and moreover

ˇ.�/ �����!
�!�1

� �
2L

�2
and ˇ.�/ �����!

�!C1 �1:
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Whence, in particular, one can conclude that there exists one and only one point ˇ
satisfying

there exists � < �˛r such that ˇ D ˇ.�/ D ˛�

˛r C �
;

provided ˛ < .�=.2L//2.

Now, we are in position to formulate the main results.

Theorem 2.2. (i) Let the family ¹�" 2 �.A"/º"2E have a convergent subsequence,
i.e., �" ! � as " D "0 ! 0. Then � 2 �.A/.

(ii) Let � 2 �.A/. Then there exists a family ¹�" 2 �.A"/º"2E such that

lim
"!0

�" D �:

From (9) and Theorem 2.2 we immediately obtain the following result.

Corollary 2.3. Let ˛ < .�=.2L//2. Let ı > 0 be an arbitrary number satisfying
2ı < ˇ � ˛. Then there exists "ı > 0 such that

�.A"/ \ .˛ C ı; ˇ � ı/ D ¿; �.A"/ \ .˛ � ı; ˇ C ı/ 6D ¿;

provided " < "ı .

3 Proof of Theorem 2.2

We present only the sketch of the proof since the main ideas are similar to the case
of bounded domains � presented in [3].

Let ¹�" 2 �.A"/º"2E and �" ! � as " D "0 ! 0. One has to show that� 2 �.A/.
In what follows we will use the index " keeping in mind "0.

We denote

z� D .0; 1/ � .�L; 0/; z�" D �" \ ..0; 1/� R/ ; z� D .0; 1/ � ¹0º:

Recall that "�1 2 N, whence �" C e1 D �"; where e1 D .1; 0/; and thus A" is a
periodic operator with respect to the period cell z�".

Using Floquet-Bloch theory (see, e.g, [13]) one can represent the spectrum of
A" as a union of spectra of certain operators on z�". We denote by zH " the space of
functions from L2. z�"/ and the scalar product de�ned by (4) with z�" instead of �".
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Let us �x ' 2 Œ0; 2�/. In zH " we consider the sesquilinear form Qa';" de�ned by (5)
with z�" instead of �" and the de�nitional domain

dom.Qa';"/ D ¹u 2 H 1. z�"/Wu.1; �/Dei'u.0; �/º:

By zA';" we denote the operator associated with this form. The spectrum of zA';"
is purely discrete. We denote by ¹ Q�';"

k
º1
kD1 the sequence of eigenvalues of zA';"

arranged in ascending order and with account of their multiplicity. Then one has

�. zA"/ D
1[

kD1
I "k ; where I "k D S

'2Œ0;2�/¹ Q�';"
k

º are compact intervals: (10)

We also introduce the operator zA' as the operator acting in

zH D ¹U 2 L2. z�/˚ L2.z�/; the scalar product is de�ned by (7)
with z�; z� instead of �;�º

and generated by the sesquilinear form Qa' which is de�ned by (8) (with z�; z� instead
of �;�) and de�nitional domain dom.Qa'/ D dom.Qa';"/˚ L2.z�/.

Lemma 3.1. The spectrum of zA' has the form

�. zA'/ D ¹˛º [ ¹Q�';�
k
; k D 1; 2; 3:::º [ ¹Q�';C

k
; k D 1; 2; 3:::º:

The points Q�';˙
k
; k D 1; 2; 3; : : : belong to the discrete spectrum, ˛ is a point of the

essential spectrum and they are distributed as follows:

0 � Q�';�1 � Q�';�2 � � � � � Q�';�
k

� � � �
����!
k!1

˛ < Q�';C1 � Q�';C2 � � � � � Q�';C
k

� � � � ����!
k!1

1:

Moreover if ˛ < .�=.2d//2 then ˇ < Q�';C1 :

This lemma was proved in [3] for the case of Neumann boundary conditions on
the lateral parts of @ z�". For the case of '-periodic conditions the proof is similar.

Now, in view of (10) there exists '" 2 Œ0; 2�/ such that �" 2 �. zA'"; "/. We
extract a convergent subsequence (for convenience still indexed by "):

'" �! ' 2 Œ0; 2�� as " ! 0: (11)

Let u" be an eigenfunction of zA'"; " corresponding to �" with ku"k zH" D 1.
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We introduce the operator

…"WL2
�N."/[

iD1
B"i

�
�! L2.�/

de�ned as follows:

…"u.x/ D
N."/X

iD1

�
jB"i j�1

ˆ

B"
i

u.x/dx

�
�"i .x/;

where �"i is the characteristic function of the interval Œi" � "; i"�. Using the Cauchy
inequality and (6) one can easily obtain the estimate

k…"uk2
L2.�/

�
N."/X

iD1
%""jB"i j�1

ˆ

B"
i

ju.x/j2.%"/�1dx � Ckuk2zH"
: (12)

From (12) and kr"u"k2
L2.�"/

D �" � C , we conclude that ¹u"º"2E and ¹…"u"º"2E
are bounded in H 1. z�/ and L2.z�/, correspondingly. Then there is a subsequence
(still indexed by ") and u1 2 H 1. z�/, u2 2 L2.z�/ such that

u" �* u1 in H 1. z�/; …"u" �* u2 in L2.z�/:
Also in view of the trace theorem and (11), we have u"j@z� ! u1 inL2.@ z�/, whence
u1.1; �/Dei'u1.0; �/, i.e., U D .u1; u2/ 2 dom.Qa'/.

If u1 D 0 then � D ˛, the proof is completely similar to the proof of this fact in
Theorem 2.1 in [3]. Then, in view of (9), � 2 �.A/.

Now, let u1 6D 0. For an arbitrary w 2 dom.Qa'"; "/ we have
ˆ

z�"

ru".x/ � rw.x/dx D �"
ˆ

z�"

.�".x//�1u".x/w.x/dx: (13)

Let w1 2 C1.xz�/; w2 2 C1.xz�/, moreover w1.1; �/Dei'w1.0; �/:We set

w"1.x/ D w1.x/..e
i.'"�'/ � 1/x1 C 1/; x D .x1; x2/:

It is easy to see that w"1.x/ satis�es w1.1; �/Dei'
"
w1.0; �/ and

w"1 �! w1 in C 1.
xz�/ as " ! 0: (14)

Using these functions we construct the test-function w.x/ by the formula

w.x/ D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

w"1.x/C
X

i2I"

.w"1.x
i;"/ � w"1.x//'."

�1jx � xi;"j/; x 2 z�;

.h"/�1.w2.xi;"/ �w"1.xi;"//x2 C w"1.x
i;"/; x D .x1; x2/ 2 T "i ;

w2.x
i;"/; x 2 B"i :
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Here xi;" WD .i"; 0/, '2C1.R/ satis�es '.t/D1 as t�R=2 and '.t/ D 0 as t � 1=2,
the constant R 2 .0; 1/ comes from (2) and (3). It is clear that w" 2 dom.a'

"; "/.

We plug w.x/ into (13) and pass to " ! 0. Using the same arguments as in the
proof of Theorem 2.1 from [3] (but with account of (14)) we obtain:

ˆ

�

ru1 � rw1dx C
ˆ

�

˛r.u1j� � u2/.w1j� �w2/dx

D �

ˆ

z�
u1w1dx C �r

ˆ

z�
u2w2dx:

By the density arguments this equality holds for an arbitrary .w1; w2/ 2 dom.Qa'/
which implies zA'U D �U; U D .u1; u2/: Since u1 6D 0 then � 2 �. zA'/. But in
view of (9) and Lemma 3.1 for each ' one has �. zA'/ � �.A/, therefore � 2 �.A/.
Property (i) is proved.

The proof of property (ii) repeats word-by-word the proof for bounded domains
� presented in [3].
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Two-dimensional time-dependent point interactions

Raffaele Carlone, Michele Correggi, and Rodolfo Figari

Dedicated to Pavel Exner

1 Introduction and main results

Point interactions have been an important theoretical tool to investigate non-trivial
qualitative features of the evolution of quantum systems. Since the early days of
quantum mechanics they have been extensively used to provide solvable models in
various �elds of applied quantum physics such as solid state physics of perfect and
disordered crystals, spectral nuclear structure, low energy neutron-nuclei scattering
and many others. In the last edition of the reference book in the �eld [6], one can �nd
a detailed and updated reading list on the subject.

The main feature of point interaction Hamiltonians is that they are characterized
by a minimal set of physical parameters. All the information about the spatial geom-
etry of the interaction potential acting on the quantum particle is included in the set of
positions of the scattering centers, whereas the dynamical parameters consist in a set
of real numbers characterizing boundary conditions that any function in the Hamil-
tonian domain has to satisfy at the scattering centers. Moreover, in one and three
dimensions, it was shown that the behavior at the scattering centers at each time is
suf�cient to determine uniquely the solution of the Schrödinger equation at any time
and at any point in space.

Later, it was recognized that a function of time (referred to as charge in the fol-
lowing) contains all the information about the behavior of the state function around
one interaction point and that the charges are solutions of a system of Volterra integral
equations. This extreme simpli�cation of the Cauchy problem was used to general-
ize the theory to time-dependent and nonlinear point interactions. Such models were
employed to investigate ionization issues and problems of quantum evolution in pres-
ence of concentrated nonlinearities in one and three dimensions, see [3], [4], [14], [9],
[10], [13], [7], [8], and [16].
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The two dimensional problem turned out to be decisively thornier. As an aside, let
us mention that in dimension two the Laplacian and the formal delta potential scale
in the same way under spacial dilation

��ax C �ı .ax/ D 1

a2
Œ��x C �ı .x/�:

A relevant consequence of such a scale invariance is that, if E is an eigenvalue of
the formal Hamiltonian, the same must be true for aE, for all a > 0, making the
Hamiltonian either trivial or non-self-adjoint. In fact, one of the possible way to
de�ne a zero-range potential in dimension two is by “dimensional regularization,”
a modern quantum �eld renormalization scheme, which turned out to be very fruit-
ful as a renormalization tool in Yang–Mills theory (see, e.g., [19] for further details).
The extension of the model to real (or complex) dimensions 2�� supplies a non-scale
invariant theory and a dimensional coupling constant. A (coupling constant depen-
dent) limit � ! 0C then provides the same family of Hamiltonians obtained using
one of the procedures now available to characterize all the self-adjoint extensions
of the Laplacian restricted to functions supported outside the set of positions of the
interaction centers [6].

From the technical point of view the presence of a logarithmic singularity in the
fundamental solution of the Laplace equation ��K C �K D ı makes the charge
equations in dimension two more dif�cult to deal with. In particular the techniques
of fractional integration and differentiation used in dimension three to regularize the
equations are no longer available. This is the main reason why the two-dimensional
problem was still open, in spite of the progress in the one- and three-dimensional
cases.

In the following we investigate the evolution problem generated by a time de-
pendent point interaction Hamiltonian in dimension two. We �rst review notation,
de�nitions and we state our main results. The last section is devoted to the proofs.

1.1 The model

In this paper we want to focus on the study of the time-evolution generated by a
time-dependent Schrödinger operator with two-dimensional point interactions. More
precisely the formal expression we start with is the following

zH D ��C
NX

jD1
�j .t /ı.x � yj /; (1)
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where x;yj 2 R2, ı.x � yj / is the Dirac delta distribution supported at point yj
and �j .t / 2 R is its strength. The expression above is just formal because in two or
more dimensions one can not give a rigorous meaning to the Dirac delta potential, not
even in the sense of quadratic forms: the dif�culty comes from the fact thatH 1.R2/,
the form domain of ��, contains functions whose value at a given point yj might
not be de�ned. To circumvent this problem one can follow different procedures, e.g.,
introduce a symmetric operator [6] which coincides with (1) on a suitable subset
of H 2.R2/ and study its self-adjoint extensions. Alternatively but equivalently it is
possible to introduce (see below) a quadratic form associated with (1) and study its
closedness, i.e., for any

j̨ .t / 2 C 1.R/
with ˛.t / D .˛1.t /; : : : ; ˛N .t //,

F˛.t/Œ � D
ˆ

R2

dr¹jr��j2 C �j��j2 � �j j2º

C
NX

jD1

�
j̨ .t /C 1

2�
log

p
�

2
� 

2�

�
jqj j2

C 1

2�

X

j¤k
q�
j qkK0.

p
�jyj � ykj/

(2)

de�ned on the domain (notice that the domain DŒF� is actually time-independent)

DŒF� D
°
 2 L2.R2/

ˇ̌
ˇ  D �� C 1

2�

NX

jD1
qjK0.

p
�jx � yj j/;

�� 2 H 1.R2/; qj 2 C

±
:

(3)

Here K0.
p
�jxj/ denote the anti-Fourier transform of .jkj2 C �/�1 for any � > 0.

K0.x/ is the modi�ed Bessel function of second kind of order 0 (also known as a
Macdonald function, see Section 9.6 of [1]). It belongs toL2.R2/, it is exponentially
decreasing for large jxj and its asymptotic behavior for small jxj reads (see (9.6.13)
in [1])

K0.
p
�jxj/ D

jxj!0
� log

p
�jxj
2

�  C o.1/; (4)

with  the Euler number. Functions in the domain of F˛.t/ are thus composed by
a regular part � and a singular part containing a local singularity proportional to
� log jx �yj j, whose coef�cient qj is the so-called charge already mentioned above.
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It is easily checked thatDŒF� is independent of�: a simple way tomake this appar-
ent is to observe that for any �1; �2 > 0,K0.

p
�1jxj/�K0.

p
�2jxj/ 2 H 1.R2/, as

one can easily verify by considering the Fourier transforms. Moreover the quadratic
form (2) de�ned on (3) is closed and bounded from below as a consequence of the
completeness of H 1.R2/ and CN . In a much more general setting the proof can be
found in [15].

Therefore it de�nes for any t 2 R a unique self-adjoint operator H˛.t/, whose
domain is

D.H˛.t// D
°
 2 L2.R2/

ˇ̌
ˇ  D �� C 1

2�

NX

jD1
qj .t /K0.

p
�jx � yj j/;

�� 2 H 2.R2/; lim
x!yj

��.x/ D .��q/j .t /
±
;

(5)

with

.��/jk D

8
ˆ̂<
ˆ̂:

j̨ .t /C 1

2�
log

p
�

2
C 

2�
; if j D k;

� 1

2�
K0.

p
�jyj � ykj/; if j ¤ k:

In the simplest case of a single point interaction at the origin the boundary condition
thus reads

lim
x!0

��.x/ D
�
˛.t/C 1

2�
log

p
�

2
C 

2�

�
q.t/:

The action of H˛.t/ on functions of D.H˛.t// characterized in the form (5) is

.H˛.t/ C �/ D .��C �/��

and all the information on the interaction is encoded in the boundary conditions.
Unlike the case of the quadratic form, the operator domain does depend on time: a
generic  2 D.H˛.t// depends on t 2 R through the regular part � and the charge
q.t /. The closedness of the form clearly implies the self-adjointness of H˛.t/, pro-
vided H˛.t/ is indeed the operator associated with F˛.t/, as we are going to show
next. A very crucial property of functions in D.H˛.t// is that in a neighborhood of
any point yj the following asymptotic behavior holds true

 .jxj/ D
jx�yj j!0

1

2�
qj log

1

jx � yj j C j̨ .t /qj C o.1/; (6)

which is indeed the typical way point interactions are de�ned in the physics literature
(see, e.g., [12] and references therein).
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Notice that, unlike the three-dimensional case, the expression of the form or op-
erator domain for � D 0 can in principle be obtained by taking the limit � ! 0 of (3)
or (5), but, due to the singular large-jxj behavior of the Green function at � D 0, i.e.,
log jxj, such a procedure does not de�ne a well-posed domain decomposition.

For convenience of the reader we recall here how one can heuristically derive the
expression of the quadratic form F˛.t/ from the formal expression (1) via a sort of
renormalization: pick any function  satisfying the required singular behavior (6) at
any point yj , then it can be decomposed as

 D �j C 1

2�
qj log

1

jx � yi j
;

where �j remains bounded as x ! yj and

��.x/ D
jx�yj j!0

�j .yj /C 1

2�
log

p
�

2
C 1

2�


� 1

2�

X

k¤j
qkK0.

p
�jyj � ykj/C o.1/;

�j .yj / D j̨ .t /qj :

Now introducing an ultraviolet cut-off " and observing that

.��C �/ D .��C �/��;

if jx � yj j > " for any j D 1; : : : ; N , one has

F˛.t/Œ �C �k k22
D lim
"!0

ˆ

S
k¹jx�yk j>"º

dx  �.x/Œ. zH C �/ �.x/

D lim
"!0

ˆ

S
k¹jx�yk j>"º

dx

h
��
�.x/C 1

2�

NX

jD1
q�
j K0.

p
�jx � yj j/

i
Œ.��C �/���.x/

D kr��k22 C �k��k22

C 1

2�
lim
"!0

NX

jD1
q�
j

ˆ

S
k¹jx�yk j>"º

dr K0.
p
�jx � yj j/Œ.��C �/ ���.x/:
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The last term can be integrated by parts twice as

1

2�

ˆ

S
k¹jx�yk j>"º

dr K0.
p
�jx � yj j/ Œ.��C �/ ��� .x/

D � 1

2�

NX

kD1

ˆ

@B".yk/

d� ��.x/ n � rK0.
p
�jx � yj j/

D � 1

2�

ˆ

@B".yj /

d� ��.x/ n � rK0.
p
�jx � yj j/C o.1/

D j̨ .t /qj C 1

2�
log

p
�

2
C 1

2�
 � 1

2�

X

k¤j
qkK0.

p
�jyj � ykj/C o.1/;

since the asymptotics (4) implies

ˆ

@B".yj /

d� n � rK0.
p
�jx � yj j/ D �

ˆ

@B".0/

d�
1

"
D �2�;

and the expression of the quadratic form is recovered.
It is worth mentioning that in the two-dimensional case point interactions are al-

ways attractive (see [6]), meaning that there always exists at least one bound state.
For a single point interaction at x D 0 with strength ˛, its wave function is propor-
tional to K0.

p
�˛jxj/ (see [6]) and its energy E˛ is

E˛ D ��˛ WD �4e2�4�˛:

1.2 Time-evolution

Our goal is to examine the properties of the time-dependent Hamiltonians we have
just de�ned and check under which conditions they generate a non-autonomous quan-
tum dynamics, meaning that there exists a two parameter group of unitary operators
U.t; s/ satisfying, in a sense which has to be speci�ed, the Schrödinger equation

i@tU.t; s/ D H˛.t/U.t; s/; (7)

in such a way that the function

 t .x/ D U.t; s/ s.x/:
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solves the Cauchy problem: for any  2 D.H˛.s//,
´
i@t t D H˛.t/ t ;

 s D  :

In this paper the focus of our attention will be on the solution of the time-evolution
problem described above. It is worth mentioning that an explicit expression of the
integral kernel of the propagator e�iH˛t , when ˛ does not depend on time, is already
known [5], but its extension to the time-dependent case is not straightforward.

Our approach is based on a result, earlier proved and exploited in dimension three,
stating that the solution of the Schrödinger equation is completely speci�ed by the
values of the charges qj .t /; j D 1; : : : ; N , characterizing the behavior of the wave
packet around the scattering centers at each time t . The time dependent complex
charges are solutions of a system of N coupled Volterra integral equations – the
charge equations – thus reducing the complexity of the problem from the analysis
of a non-autonomous �ow in an in�nite-dimensional Hilbert space to the search of
solutions to a system of Volterra-type equation for N complex valued functions of
time (see (9) below). For computational purposes as well as for possible extensions
to nonlinear models such a complexity reduction is of course crucial. The procedure
outlined above has been exploited in [23], for the three-dimensional analogue of the
problem we are facing here, in [14], [13], [9], and [10] to investigate model-atoms
ionization triggered by time dependent forces in dimension one and three and in [16]
for the derivation of the time-dependent propagator in the case of three-dimensional
moving point interactions. For a detailed introduction to the problem considered in
this paper as well as many preliminary results we also refer to [2].

Before stating our main result we need to introduce �rst some notation: U0.t /
will denote the free propagator, i.e.,

U0.t / WD ei�t ;

with integral kernel for t 2 R and x 2 R2,

U0.t I jxj/ D e�jxj2=.4it/

2it
:

The Volterra function of order �1 (see [17]) is de�ned as

I.t / WD
ˆ 1

0

d�
t ��1

�.�/
; (8)

where � denotes the Gamma function. Some of the crucial properties of I.t / are
listed in Section 2.1. Here we just point out that I is an analytic function of t with
branch points at 0 and 1.
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Before stating our main result we introduce the charge equation associated to the
time-evolution of the Hamiltonian H˛.t/: given any initial datum  s 2 D.H˛.s//,

✎

✍

☞

✌
q.t /C

ˆ t

s

d� K.t; �/ q.�/ D f .t /; (9)

where

Kjk.t; �/ WD

8
ˆ̂<
ˆ̂:

4�I.t � �/
�
j̨ .�/ � 1

2�
log 2C 

2�

�
if j D k;

�2iI.t � �/

ˆ �

s

d� U0.� � � I jyj � ykj/ if j ¤ k;

and

fj .t / WD 4�

ˆ t

s

d� I.t � �/.U0.�/ s/.yj /:

Theorem 1.1 (time-evolution). Let U.t; s/WL2.R2/ ! L2.R2/ be the map
✓

✒

✏

✑
.U.t; s/ s/ .x/ D .U0.t � s/ s/.x/C i

2�

NX

jD1

ˆ t

s

d� U0.t � � I jx � yj j/ qj .�/;

(10)
where q.t / is a solution of the Volterra-type integral equation (9). Then

(a) U.t; s/ is a two-parameter unitary group: for any v; t; s 2 R, U.t; s/ is unitary,
U.t; t / D 1 and U.t; s/U.s; v/ D U.t; v/;

(b) for any t; s 2 R,U.t; s/ solves the time-dependent Schrödinger equation (7), i.e.,
for any  s 2 D.H˛.s//,  t WD U.t; s/ s 2 D.H˛.t// and

i@t t D H˛.t/ t : (11)

Remark 1.2 (uniqueness of q.t /). Although we did not state it explicitly the well-
posedness of the time-evolution identi�ed by U.t; s/ requires that the solution to (9)
is unique. This is indeed the case as it is proven in Proposition 2.3.

Remark 1.3 (ansatz (10)). The statement of Theorem 1.1 says that the ansatz (10)
provide the time-evolution of  s whenever q.t / solves the charge equation (9). Such
a statement however can be also read in the opposite direction: given  t any solu-
tion to the time-dependent Schrödinger equation (11), then it can be rewritten in the
form (10), with q.t / solving the charge equation (9).
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2 Proofs

This Section contains the proofs of the results stated in Theorem 1.1, which are di-
vided in several steps:

1. �rst we examine the integral operator de�ned by the Volterra kernel I and prove
some of its relevant properties;

2. then we focus on the charge equation and prove that there exists a unique solu-
tion in the space of continuous functions;

3. such information becomes then a crucial ingredient to prove that the form do-
main DŒF� is invariant under the map U.t; s/;

4. next we show that given  s 2 D.H˛.s// then U.t; s/�s 2 D.H˛.t// and on a
dense subset of the Hilbert space U.t; s/ de�nes an isometry, which coincides
with the time-evolution generated byH˛.t/;

5. �nally we show that U extends to a two-parameter unitary group by density.

2.1 Properties of the Volterra kernel I

We start the discussion by recalling some useful properties of the function IŒt � de�ned
in (8). We refer to Section 18.3 of [17] (where I.t / is denoted as �.t;�1/) for further
details. One striking relation involving I.t / is the inversion formula of the Laplace
transform (see [18] and [22]): denoting by

.Lf /.p/ D
ˆ 1

0

dt e�ptf .t/;

the usual action of the Laplace transform, then

L�1
� p

log.p/

�
.t / D �.t;�1/ D I.t /:

Since they will play some role in the following we also provide the asymptotic
expansions of I.t / as t ! 0 or t ! 1 (see again [17]):

I.t / D
t!0

1

t log2.1=t/
Œ1C O.j log t j�1/�;

I.t / D
t!1 et C O.t�1/:

Hence, given the previous expansions, I.t / 2 L1loc.R/.
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Next we study the integral operator

.If / .t/ WD
ˆ t

0

d� I.t � �/f .�/: (12)

We also denote by J the integral operator with kernel

.Jf / .t/ WD
ˆ t

0

d� J.t � �/f .�/; J.t � �/ D � � log.t � �/:

In [11] the operator I is investigated in details and several useful properties, such as
its smoothing action, are established. Here we only need a notable identity, which
is stated in Lemma 2.2 and a simple estimate of the Sobolev norm of If (we refer
to [11] for the proof):

Lemma 2.1. If f 2 H �.0; T / with 0 < � 6 1, then If 2 H �.0; T /, i.e., there
exists Ct < C1 such that

kIf kH�.0;T / 6 CT kf kH�.0;T / : (13)

Moreover CT ! 0 as T ! 0.

Lemma 2.2. For any t 2 RC and f 2 L1.0; t /,

.IJf / .t/ D
ˆ t

0

d� f .�/:

Proof. We �rst observe that one has the identity

ˆ t

0

d� I.t � �/.� � log �/ D 1: (14)

In Lemma 32.1 in [22] it is indeed proven that (in the formula proved in the cited
Lemma one should take ˛ D 1; h D 0)

ˆ t

0

d� .log � �  .1// @t�.t � �/ D �1;

but, using [17] (eq (12), Section 18.3), one can recognize that @t�.t/ D I.t /.
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Next we note that in the expression

.IJf /.t/ D
ˆ t

0

d�
ˆ t��

0

d� I.�/J.t � � � �/f .�/;

one can exchange the order of the integration, since

ˆ t

0

d�
ˆ t��

0

d� I.�/J.t � � � �/f .�/C
ˆ t

0

d�
ˆ t��

0

d� I.�/J.t � � � �/f .�/

D
ˆ t

0

d�
ˆ t

0

d� I.�/J.jt � � � � j/f .�/

D 2

ˆ t

0

d�
ˆ t��

0

d� I.�/J.jt � � � � j/f .�/;

Using (14) we conclude that

.IJf / .t/ D
ˆ t

0

d�
ˆ t��

0

d� I.�/J.t � � � �/f .�/ D
ˆ t

0

d� f .�/:

2.2 Derivation of the charge equation

Before starting to discuss the charge equation, we present a heuristic computation
which motivates the ansatz (10). First of all we set s D 0 and assume that qj .0/ D 0.
Neglecting any regularity issue, we can compute the time derivative of (10) and obtain

i@t .U.t; 0/ 0/.x/

.��U0.t / 0/.x/� 1

2�

NX

jD1
qj .t /

C 1

2�

NX

jD1

ˆ t

0

d� @�U0.t � � I jx � yj j/ qj .�/

D .��U0.t / 0/.x/� 1

2�

NX

jD1

ˆ t

0

d� U0.t � � I jx � yj j/ Pqj .�/;

so that if we take the Fourier transform de�ned for a function f 2 L2.R2/ as

Of .p/ WD 1

2�

ˆ

R2

dx e�ip�xf .x/;
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the above expression becomes (we set k D jpj)

i@t .3U.t; 0/ 0/.p/ D p2e�ip2tc 0.p/ � 1

2�

NX

jD1

ˆ t

0

d� e�ip�yj e�ip2.t��/ Pqj .�/:

(15)
Similarly, recalling that (see, e.g., (6.532.4) in [20])

1

2�

ˆ

R2

dp
eip�x

p2 C �
D
ˆ 1

0

dp
pJ0.pjxj/
p2 C �

D K0.
p
�jxj/;

one gets

.7H˛.t/U.t; 0/ 0/.p/

D p2
�3U.t; 0/ 0.p/ � 1

2�

NX

jD1

qj e
�ip�yj

p2 C �

�
� �

2�

NX

jD1

qj e
�ip�yj

p2 C �

D p2e�ip2tc 0.p/C 1

2�

NX

jD1

ˆ t

0

d� e�ip�yj @� .e
�ip2.t��// qj .�/

� 1

2�

NX

jD1
qj e

�ip�yj

D p2e�ip2tc 0.p/ � 1

2�

NX

jD1

ˆ t

0

d� e�ip�yj e�ip2.t��/ Pqj .�/;

(16)

which equals (15). Therefore, for any q.t / and  0 for which the right hand side
of (16) is de�ned, the assumed solution does solve the time-dependent Schrödinger
equation, at least in a weak sense. To be solution of the charge equation is the con-
dition that guarantees that for any t 2 R,  t 2 D.H˛.t//. Indeed, if we impose the
boundary condition as in (5), we get

1

2�

ˆ

R2

dp eip�yjc��.p/ D .��q/j .t /; (17)
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and therefore

1

2�

ˆ

R2

dp eip�yj

²
e�ip2tc 0.p/C i

2�

NX

kD1

ˆ t

0

d� e�ip�yke�ip2.t��/ qk.�/

� 1

2�

NX

kD1

qk.t /e
�ip�yk

p2 C �

³

D
�
j̨ .t /C 1

2�
log

p
�

2
� 

2�

�
qj .t / � 1

2�

X

k¤j
qk.t /K0.

p
�jyj � ykj/:

The last off-diagonal term cancels exactly and thus the identity becomes

1

2�

ˆ

R2

dp eip�yj

²
e�ip2tc 0.p/C i

2�

NX

kD1

ˆ t

0

d� e�ip�yke�ip2.t��/ qk.�/

� 1

2�

qj .t /e
�ip�yj

p2 C �

³

D
�
j̨ .t /C 1

2�
log

p
�

2
C 

2�

�
qj .t /:

Combining the last diverging term on the left hand side with the second one, via an
integration by parts (here we implicitly assume that the charge belongs to a suitable
Sobolev space), we get

1

2�

ˆ

R2

dp

²
eip�yj e�ip2tc 0.p/

� 1

2�.p2 C �/

ˆ t

0

d� e�ip2.t��/ Œ Pqj .�/ � i�qj .�/�

C i

2�

X

k¤j

ˆ t

0

d� eip�.yj �yk/e�ip2.t��/ qk.�/
³

D
�
j̨ .t /C 1

2�
log

p
�

2
C 

2�

�
qj .t /;

Thep integral of the second term on the left hand side contains an infrared singularity
for t D � which goes as log.t � �/: since (see (3.722.1) and (3.722.3) in [20])
ˆ

R2

dp
e�ip2.t��/

p2 C �
D ��ei�.t��/ŒCi.�.t � �// � iSi.�.t � �//�

D ��. C log�C log.t � �//CQ.�I t � �/ei�.t��/;
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where Si. � / and Ci. � / stand for the sine and cosine integral functions (see (5.2.1)
and (5.2.2) in [1]) and (see, e.g., (5.2.16) in [1])

Q.�I t � �/ WD ��.1� ei�t /. C log�C log.t � �//

� �ei�.t��/
� 1X

nD1

.�.t � �/2�2/n
2n.2n/Š

� iSi..t � �/�/
�
:

Note thatQ.0I t � �/ D 0. Hence the charge equation can be rewritten

.U0.t / 0/.yj /C i

2�

X

k¤j

ˆ t

0

d� U0.t � � I jyj � ykj/ qk.�/

�
�
j̨ .t /C 1

2�
log

p
�

2
C 

2�

�
qj .t /

D � 1

4�

ˆ t

0

d�
�
 C log.t � �/C log� � 1

�
Q.�I t � �/

�
@� .e

i�.t��/qj .�//

and taking the limit � ! 0 (notice the exact cancellation of the diverging log� terms)

.U0.t / 0/.yj /C i

2�

X

k¤j

ˆ t

0

d� U0.t � � I jyj � ykj/ qk.�/

�
�
j̨ .t /� 1

2�
log 2C 

2�

�
qj .t /

D � 1

4�

ˆ t

0

d� . C log.t � �// Pqj .�/:

(18)

If we now apply to both sides the integral operator I de�ned in (12) and exploit the
property proven in Lemma 2.2, we �nally recover the charge equation (9).

2.3 Charge equation

We now consider the charge equation and its solution.

Proposition 2.3 (existence and uniqueness of solutions to (9)). Given s2 D.H˛.s//,
the solution q.t / of the charge equation (9) exists and is unique in C.0; T / for any
T < 1. Moreover q.t / 2 H �.0; T / for any � < 3=4.

Proof. According to the general theory of Volterra integral equations [21], special-
ized to the linear case there exists at least one continuous solution to (9) and it is
unique if the following conditions are satis�ed:
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(a) f .t / is continuous on t 2 RC;

(b) K.t; �/ is measurable and K.t; �/ 2 L1.0; t / for any �nite t .
Let us check that the integral kernel Kjk.t; �/ 2 L1.0; t / In particular to see that
Kjk.t; �/ is integrable, it suf�ces to notice that the diagonal term is L1 because
I.t � �/ is, while for j ¤ k,

jKjk.t; �/j 6 2jI.t � �/j
ˇ̌
ˇ̌
ˆ �

s

d� U0.� � � I jyj � yk j/
ˇ̌
ˇ̌ 6 Ct jI.t � �/j;

for some Ct < 1, if t < 1. Indeed the integral
ˆ �

s

d� U0.� � � I jyj � ykj/

is explicitly computable and it is �nite for any � > 0, if jyj � yk j > 0.
Therefore to complete the proof we need to show that f .t / is a continuous func-

tion of t in any compact subset of RC. By hypothesis  s 2 D.H˛.s// and thus it can
be decomposed as in (5), i.e.,

fj .t / D 4�

ˆ t

s

d� I.t � �/
²
.U0.�/��;s/.yj /

C 2qj .s/

ˆ

R2

dx0 U0.� I jyj � x0j/K0.x0 � yj /

C 2
X

k¤j
qk.s/

ˆ

R2

dx0 U0.� I jyj � x0j/K0.x0 � yk/

³

(19)

with ��;s 2 H 2.R2/.
We �rst consider the term involving ��;s: applying the Fourier transform, we have

4�.U0.�/��;s/.yj / D 2

ˆ

R2

dp eip�yj e�ip2�b��;s.p/

D 2

ˆ

R2

dp e�ip2�4.T �1
yj
��;s/.p/

D 2�

ˆ 1

0

d% e�i%�h4.T �1
yj
��;s/i.p%/

D .2�/
3=2 .FG.%// .t/

where
G1.%/ WD 1Œ0;C1/.%/ h4.T �1

yj
��;s/i.p%/;
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F stands for the Fourier transform in L2.R/ and we have denoted by hf i the angular
average of a function on R2, i.e.,

hf i.p/ D 1

2�

ˆ 2�

0

d# f .p; #/:

In order to bound the norm of .U0.�/��;s/.yj / inH �.R/, we estimate

4�

ˆ

R

d% j%j2� j.F.U0. � /��;s/.yj //.%/j2

D 32�4
ˆ

R

d% j%j2�j.F�1.FG1//.�%/j2

D 64�4
ˆ 1

0

dp p4�C1jh4.T �1
yj
��;s/i.p/j2

6 C

ˆ

R2

dp p4�j4.T �1
yj
��;s/.p/j2:

Since ��;s 2 H 2, the last integral is bounded for any 0 6 � 6 1 and therefore�
U0. � /��;s

�
.yj / 2 H 1.0; T /. Thanks to Lemma 2.1 the Sobolev degree is con-

served by the action of I and therefore the �rst term in (19) is in H 1.0; T /, which
implies, via Sobolev inequality, that it is a continuous function of t 2 RC.

Let us consider now the sum in the last term in (19): we �rst rewrite

.U0.�/Tyk
K0.

p
� � //.yj / D

ˆ

R2

dx0 U0.� I jyj � x0j/K0.x0 � yk/

D 1

2�

ˆ

R2

dp
eip�.yj �yk/e�ip2�

p2 C �

D 1

2�

ˆ 1

0

dp p
ˆ 2�

0

d#
eipjyj �ykj cos#e�ip2�

p2 C �

D
ˆ 1

0

dp p
e�ip2�J0.pjyj � ykj/

p2 C �

D � .FG2/ .�/;

with

G2.%/ D 1Œ0;C1/.%/
J0.

p
%jyj � yk j/
%C �

:
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As before in order to bound theH �-norm of .U0.�/Tyk
K0.

p
� � //.yj / we estimate,

using the asymptotics of Bessel functions for large argument (see (9.2.1) in [1])

ˆ

R

d% j%j2� j.F.U0.�/Tyk
K0.

p
� � //.yj //.%/j2

D �2
ˆ

R

d% j%j2� j.F�1FG2/.�%/j2

D �2
ˆ 1

0

dp p4�C1 J 20 .pjyj � ykj/
.p2 C �/2

6 C

ˆ 1

0

dp p4�C1 1

.p C 1/ .p2 C �/
2
;

which is �nite for any � < 3=4. This implies that .U0.�/Tyk
K0.

p
��//.yj / belongs to

H �.0; T /, for any � < 3=4. The action of I does not change the Sobolev degree and
therefore the last term in (19) is continuous in t , thanks again to Sobolev inequality.

The last term to consider is the second one in (19): as before we have

.U0.�/Tyj
K0.

p
� � //.yj / D

ˆ

R2

dx0 U0.� I jyj � x0j/K0.x0 � yj /

D 1

2

ˆ 1

0

d%
e�i%�

%C �

D 1

2
ei�� .iSi.��/ � Ci.��//

D �1
2
. C log�C log �/C 1

2�
Q.�I �/ei�� :

Hence

I Œ.U0.�/Tyj
K0.

p
� � //.yj /� D 1C

ˆ t

s

d� I.t � �/
h

� 1

2
log �C 1

2�
Q.�I �/

i
;

but since Q.�; �/ is a smooth function on any compact set, the same applies to the
second term in (19), which is continuous as well.

In order to prove the last statement it suf�ces to apply a bootstrap like argument:
for suf�ciently small times the charge equation can be solved since the operator 1CK

is invertible inH �.0; T /, � < 3=4. This is a consequence of (13) and differentiability
of ˛.t/. Hence q 2 H �.0; T /, � < 3=4, for small enough T , but then one can repeat
the argument with initial condition q.T / so proving the statement.



206 R. Carlone, M. Correggi, and R. Figari

2.4 Time-evolution in the form and operator domains

In this Section we show that the form domain is invariant under U.t; s/.

Proposition 2.4 (invariance of DŒF� for initial data in D.H˛.s//). Let q.t / be the
unique solution to (9) with initial condition q.t /jtDs D q.s/ and  s 2 D.H˛.s//,
then U.t; s/ s 2 DŒF� for any t 2 R.

Proof. In order to prove the statement we need to show that

.U.t; s/ s/ .x/ � 1

2�

NX

jD1
qj .t /K0.

p
�jx � yj j/ 2 H 1.R2/;

whenever  s 2 DŒF�. Setting for simplicity s D 0 and passing to the Fourier repre-
sentation, this is equivalent to requiring that the following function of p,

e�ip2tc 0.p/C i

2�

NX

jD1

ˆ t

0

d� eip�yj e�ip2.t��/qj .�/ � 1

2�

NX

jD1

qj .t /e
ip�yj

p2 C �
;

belongs to L2.R2; .p2 C 1/dp/. After an integration by parts the above expression
becomes (here Pqj stands for the weak derivative of qj , which belongs at least to
H �.0; T /, � < �1=4, since qj .t / 2 H � , � < 3=4 by Proposition 2.3)

e�ip2tc 0.p/ � 1

2�

NX

jD1

qj .0/e
ip�yj e�ip2t

p2 C �

C 1

2�.p2 C �/

NX

jD1

ˆ t

0

d� eip�yj e�i.p2C�/.t��/@� .ei��qj .�//:

(20)

Now the �rst two terms represent the free evolution of the regular part ��;0 of the
initial state  0. Since by hypothesis  0 2 DŒF�, then ��;0 2 H 1.R2/ and therefore
the sum of those two terms (or rather their Fourier anti-transform) belongs toH 1.R2/

as well.
It remains then to prove that the last term in (20) is inL2.R2; .p2C1/dp/: setting

z.t/ D @t .e
i�.t��/qj .t // and calling each term of the sum gj .p/ for short, we have
ˆ

R2

dp .p2 C 1/jgj .p/j2 D 1

8

ˆ 1

0

d%
%C 1

.%C �/2
j.Fz0;t /.%/j2

where we have denoted for any function f W Œ0; T � ! C and 0 6 a < b 6 T ,

fa;b.t / WD f .t/1Œa;b�.t /:
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Now the right hand side is obviously bounded by

Ckz0;tk2H�1=2.R/
6 Ct .k.qj /0;tk2H�1=2.R/

C k. Pqj /0;tk2H�1=2.R/
/;

for some Ct < 1 for �nite t . In Lemma 2.1 in [8] it is proven that if f 2 H �.0; T /

for 0 < � < 1=2 (see also Lemma 5 in [3]), then f0;t 2 H �.R/. Therefore the
�rst term on the right hand side of the above expression is always bounded, since by
Proposition 2.3, qj 2 H �.0; T / for any 1=2 < � < 3=4. For the second term one
can not apply directly (see Lemma 2.1 in [8]) because the Sobolev degree of Pqj is
negative, but one can circumvent such a problem by modifying the extension of Pqj
(see the proof of Theorem 4 in [4]): let Qj .�/, � 2 R, be the following function
which extends qj .�/,

Qj .�/ D

8
ˆ̂<
ˆ̂:

qj .0/ for � < 0;

qj .t / for � > t;

qj .�/ for 0 6 � 6 t:

Then one has that PQj D � Pqj
�
0;t

but Qj 2 H �
loc.R/ for any 1=2 < � < 3=4, which

implies that PQj 2 H ��1.R/, since it is compactly supported. In conclusion . Pqj /0;t 2
H �.R/ for any �1=2 < � < �1=4 and the second term is bounded as well.

The above result in combination with the heuristic computation made at the beginning
of Section 2.2 yields the following very important corollary.

Corollary 2.5. Let s 2 DŒF�, thenU.t; s/ s solves the time-dependent Schrödinger
equation (7) in the quadratic form sense, i.e., for any � 2 DŒF�,

i@t h� j U.t; s/ si D F˛.t/Œ�; U.t; s/ s�;

for any t 2 R and with F˛.t/Œ � ; � � standing for the sesquilinear form associated to
the quadratic form F˛.t/Œ � �.
Proof. It suf�ces to note that the identities proven at the beginning of Section 2.2,
up to (16), are in fact rigorous once projected onto a state � 2 DŒF�. The result of
Proposition 2.4 completes the argument.

2.5 Completion of the proof

In order to complete the proof of Theorem 1.1, we have to show that

U.t; s/WD.H˛.s// �! D.H˛.t//

and it is an isometry in that subspace.
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Lemma 2.6. Let  s 2 D.H˛.s//, then for any t 2 R, U.t; s/ s 2 D.H˛.t//.

Proof. Thanks to Proposition 2.4 at least U.t; s/ s 2 DŒF� so that it can be decom-
posed in a regular part inH 1.R2/ plus the singular terms given in (3). However this is
the only information needed to make rigorous the heuristic derivation presented from
eqs. (17) to (18). The property stated in Lemma 2.2 and the fact that q.t / solves the
charge equation implies then the result.

Lemma 2.7. Let  s 2 D.H˛.s//, then

kU.t; s/ sk2 D k sk2 :

Proof. We simply compute the time-derivative of the L2 norm of the ansatz (10):

@tkU.t; s/ sk22 D 2< hU.t; s/ s j @tU.t; s/ si
D �2<.iF˛.t/ŒU.t; s/ s; U.t; s/ s�/

D 0;

thanks to Lemma (2.6), Corollary 2.5 and the trivial observation that if t 2 D.H˛.t//

then  t 2 DŒF�.

Proof of Theorem 1.1. Lemma 2.6 in combination with Corollary 2.5 implies that
given any  s 2 D.H˛.s//, U.t; s/ s solves the time-dependent Schrödinger equa-
tion.

Moreover U.t; t / D 1 and, for any  0 2 D.H˛.0//,

.U.t; s/U.s; 0/ 0/.x/

D .U0.t / 0/.x/C i

2�
U0.t � s/

NX

jD1

ˆ s

0

d� U0.s � � I jx � yj j/ qj .�/

C i

2�

NX

jD1

ˆ t

s

d� U0.t � � I jx � yj j/ qj .�/

D .U0.t / 0/.x/C i

2�

NX

jD1

ˆ t

0

d� U0.t � � I jx � yj j/ qj .�/

D .U.t; 0/ 0/.x/;

i.e., the map U.t; s/ satis�es the group composition rules. SinceD.H˛.t// is densely
de�ned, one can extend the map U.t; s/ to the whole Hilbert space by density and,
due to the properties above, such an extension is automatically unitary.
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with point interaction. J. Phys. A 27 (1994), no. 14, 4933–4943. MR 1295192
Zbl 0841.34086

[6] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable models
in quantum mechanics. Second edition. AMS Chelsea Publishing, Providence,
R.I., 2005. With an Appendix by P. Exner. ISBN 0-8218-3624-2/hbk
MR 2105735 Zbl 1078.81003

[7] C. Cacciapuoti, D. Finco, D. Noja, and A. Teta, The NLS equation in dimen-
sion one with spatially concentrated nonlinearities: the pointlike limit. Lett.
Math. Phys. 104 (2014), no. 12, 1557–1570. MR 3275343 Zbl 1303.81072

[8] C. Cacciapuoti, D. Finco, D. Noja, and A. Teta, The point-like limit for a NLS
equation with concentrated nonlinearity in dimension three. Preprint 2015.
arXiv:1511.06731 [math-ph]

http://www.ams.org/mathscinet-getitem?mr=1225604
http://www.ams.org/mathscinet-getitem?mr=MR0167642
http://zbmath.org/?q=an:0643.33001
http://zbmath.org/?q=an:0171.38503
http://www.ams.org/mathscinet-getitem?mr=1814425
http://zbmath.org/?q=an:0979.35130
http://www.ams.org/mathscinet-getitem?mr=1972871
http://zbmath.org/?q=an:1028.35137
http://www.ams.org/mathscinet-getitem?mr=1295192
http://zbmath.org/?q=an:0841.34086
http://www.ams.org/mathscinet-getitem?mr=2105735
http://zbmath.org/?q=an:1078.81003
http://www.ams.org/mathscinet-getitem?mr=3275343
http://zbmath.org/?q=an:1303.81072
http://arxiv.org/abs/1511.06731


210 R. Carlone, M. Correggi, and R. Figari

[9] M. Correggi and G. Dell’Antonio, Decay of a bound state under a time-periodic
perturbation: a toy case. J. Phys. A 38 (2005), no. 22, 4769–4781. MR 2148620
Zbl 1071.81038

[10] M. Correggi, G. Dell’Antonio, R. Figari, and A. Mantile, Ionization for three
dimensional time-dependent point interactions. Comm.Math. Phys. 257 (2005),
no. 1, 169–192. MR 2163573 Zbl 1079.81014

[11] R. Carlone andA. Fiorenza, Regularization properties of Volterra integral equa-
tions with Sonine type kernels. In preparation.

[12] M. Correggi, D. Finco, and A. Teta, Energy lower bound for the unitary N C 1

fermionic model. Europhys. Lett. 111 (2015), no. 1, 10003.

[13] O Costin, J. L. Lebowitz, and A. Rokhlenko, Exact results for the ioniza-
tion of a model quantum system. J. Phys. A 33 (2000), no. 36, 6311–6319.
MR 1789555 Zbl 1064.81548

[14] O Costin, R. D. Costin, J. L. Lebowitz, and A. Rokhlenko, Evolution of a
model quantum system under time periodic forcing: conditions for com-
plete ionization. Comm. Math. Phys. 221 (2001), no. 1, 1–26. MR 1846899
Zbl 0996.81017

[15] G. Dell’Antonio, R. Figari, A. Teta, Hamiltonians for systems of N particles
interacting through point interactions. Ann. Inst. H. Poincaré Phys. Théor. 60
(1994), no. 3, 253–290. MR 1281647 Zbl 0808.35113

[16] G. Dell’Antonio, R. Figari, A. Teta, The Schrödinger equation with moving
point interactions in three dimensions. In F. Gesztesy, H. Holden, J. Jost,
S. Paycha, M. Röckner, and S. Scarlatti (eds.), Stochastic processes, physics
and geometry: new interplays. I. A volume in honor of S. Albeverio. Proceed-
ings of the Conference on In�nite-dimensional (Stochastic) Analysis and Quan-
tum Physics held in Leipzig, January 18–22, 1999.CMS Conference Proceed-
ings, 28. Published by the AmericanMathematical Society, Providence, R.I., for
the CanadianMathematical Society, Ottawa, ON, 2000, 986–994. MR 1803381
Zbl 0974.81014

[17] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher tran-
scendental functions. Vol. III. Based on notes left by H. Bateman. Bate-
man Manuscript Project, California Institute of Technology. Reprint of the
1955 original. Robert E. Krieger Publishing Co., Melbourne, Fla., 1981.
ISBN 0-89874-069-X MR 0698781 MR 0066496 (original) Zbl 0542.33002
Zbl 0064.06302 (original)

http://www.ams.org/mathscinet-getitem?mr=2148620
http://zbmath.org/?q=an:1071.81038
http://www.ams.org/mathscinet-getitem?mr=2163573
http://zbmath.org/?q=an:1079.81014
http://www.ams.org/mathscinet-getitem?mr=1789555
http://zbmath.org/?q=an:1064.81548
http://www.ams.org/mathscinet-getitem?mr=1846899
http://zbmath.org/?q=an:0996.81017
http://www.ams.org/mathscinet-getitem?mr=1281647
http://zbmath.org/?q=an:0808.35113
http://www.ams.org/mathscinet-getitem?mr=1803381
http://zbmath.org/?q=an:0974.81014
http://www.ams.org/mathscinet-getitem?mr=0698781
http://www.ams.org/mathscinet-getitem?mr=0066496
http://zbmath.org/?q=an:0542.33002
http://zbmath.org/?q=an:0064.06302


Two-dimensional time-dependent point interactions 211

[18] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of inte-
gral transforms. Vol. I. Based, in part, on notes left by H. Bateman. Bateman
Manuscript Project. California Institute of Technology. McGraw–Hill Book
Company, New York etc., 1954. MR 0061695 Zbl 0055.36401

[19] L. D. Faddeev, Notes on divergences and dimensional transmutation in Yang–
Mills theory. Teoret. Mat. Fiz. 148 (2006), no. 1, 133–142. In Russian. En-
glish translation, Theor. Math. Phys. 148 (2006), no. 1, 986–994. MR 2283654
Zbl 1177.81105

[20] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products.
Seventh edition. Translated from the Russian. Translation edited and with
a preface by A. Jeffrey and D. Zwillinger. With one CD-ROM (Windows,
Macintosh and UNIX). Elsevier/Academic Press, Amsterdam, 2007.
ISBN 978-0-12-373637-6, 0-12-373637-4 MR 2360010 Zbl 1208.65001

[21] R. K. Miller, Nonlinear Volterra integral equations.Mathematics Lecture Note
Series. W. A. Benjamin, Menlo Park, CA, 1971. MR 0511193 Zbl 0448.45004

[22] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and
derivatives. Theory and applications. Edited and with a foreword by
S. M. Nikol0skiı̆. Translated from the 1987 Russian original. Revised by the
authors. Gordon and Breach Science Publishers, Yverdon, 1993.
ISBN 2-88124-864-0 MR 1347689 Zbl 0818.26003

[23] M. R. Sayapova and D. R. Yafaev, The evolution operator for time-dependent
potentials of zero radius. TrudyMat. Inst. Steklov. 159 (1983), 167–174. Bound-
ary value problems ofmathematical physics, 12. In Russian. English translation,
Proc. Steklov Inst. Math. 159 (1984), 173–180.

http://www.ams.org/mathscinet-getitem?mr=0061695
http://zbmath.org/?q=an:0055.36401
http://www.ams.org/mathscinet-getitem?mr=2283654
http://zbmath.org/?q=an:1177.81105
http://www.ams.org/mathscinet-getitem?mr=2360010
http://zbmath.org/?q=an:1208.65001
http://www.ams.org/mathscinet-getitem?mr=0511193
http://zbmath.org/?q=an:0448.45004
http://www.ams.org/mathscinet-getitem?mr=1347689
http://zbmath.org/?q=an:0818.26003




On resonant spectral gaps in quantum graphs

Ngoc T. Do, Peter Kuchment, and Beng Ong

Dedicated to the 70th birthday of Pavel Exner

Introduction

Existence of gaps in the spectra of operators of mathematical physics plays important
role in many areas (e.g., solid state physics [1], photonic crystal manufacturing [5]
and [6], and in expander graphs construction [11], see also discussion in [7], Sec-
tion 6.1). This also applies to constructions of thin branching structures (e.g., quan-
tum wire circuits), which can be modeled by the so-called quantum graphs (see [2]
and [3]). One of the standard ways to achieve the band-gap structure of the spectrum
is by making the medium periodic, where the gaps may arise due to the Bragg scat-
tering [1]. However, existence of spectral gaps in periodic media is not guaranteed
and is not easy to achieve and manipulate (see, e.g., [7], Section 6.1). Thus, a differ-
ent, resonant gaps technique has been explored, where identical resonators are dis-
tributed throughout the medium to create spectral gaps (the earliest reference known
to the authors is [10]). This idea was implemented in the discrete situation in [12] by
attaching to each vertex v of the graph � (which is the medium in this case) an iden-
tical decoration (resonator) G (Figure 1).

Here one hits a snag. The nice procedure in [12] does not work nearly that well
when the common “boundary” between � and G consists of more than one point, as
it is the case in the spider decorations (Figure 2).

When the boundary is a single point, by applying a rather standard technique
used in considering the transmission problem between twomedia, one can rewrite the
spectral problem on the decorated graph as the one on the original graph � with an
additional energy (spectral parameter) dependent potential (Dirichlet–to–Neumann
operator of the decoration, see [2], Section 5.1, for details). Poles of this potential
arise at the spectrum of the decoration, which leads to the gap opening.
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G

V

�

Figure 1. Decorations used by Schenker and Aizenman in [12]

This technique has been extended to the case of quantum graphs, see [2] (Sec-
tion 5.1) and references therein. However, it would be more convenient in many in-
stances (e.g., in photonic crystal theory when considering the so called inverse opal
structures) to insert some internal structure into each vertex, rather than attach a deco-
ration (resonator) to it sideways. In other words, one is looking for a spider decoration
(Figure 2).1

V

Figure 2. A “spider” decoration replacing a vertex V

With the boundary consisting of more than one point, the arising potential term is
now a meromorphic matrix function, whose poles may or may not show up,
depending on the vector the matrix function is applied to. Thus, it is easy to construct
examples when a spider decoration does not lead to spectral gap opening (see [9],
Chapter 3).

However, as it is shown in [9] (Chapter 3), there are some special decoration
constructions that resolve this problem in the case of �nite graphs. The goal of this
paper is to extend the (unpublished) considerations of [9] (Chapter 3).

1Compare with the �rst step of the zig-zag construction of an expander [11].
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We provide necessary notions and notations in Section 1, the auxiliary study of
the Dirichlet–to–Neumann operator of a graph in Section 2, the main result on gap
opening in Section 3, and conclusions and some remarks in Section 4.

1 Preliminaries

We consider a metric graph �0, i.e., a graph such that each its edge e is equipped with
a �nite positive “length” le and a coordinate x identifying it with the segment Œ0; le�
(see more detailed discussion in [2], Chapter 1). We will use the standard notations
V.�0/ and E.�0/ for the sets of vertices and edges of the graph respectively.

We will assume in this text that the following condition on the edge lengths of the
graphs �0 is satis�ed:

there exists l > 0 such that l � le � 1=l < 1; for all e 2 E.�0/: (1)

In particular, this is true when the graph �0 is either �nite (i.e., has a �nitely many
edges and vertices) or periodic (i.e., is equipped with the co-�nite action of the group
Zp for some p > 0, see [2], Section 4.1).

Let us also assume that �0 is a d -regular graph (i.e., the degree of each of its
vertices is equal to d ) and G is a �nite metric graph with at least d vertices and a
singled out subset B � V.G/ consisting of d vertices. The set B will be called the
boundary of G. For each vertex v � V.�0/ we establish a 1–to–1 correspondence
between the edges adjacent to v and the elements of B . One can now decorate in a
natural way the vertex v with the internal structure, which is a copy of G (see again
Figure 2). Doing this for all vertices of �0, we obtain the decorated graph � .

All graphs we consider are equipped with the self-adjoint operators,2 H0 in
L2.�0/ and H in L2.�/, as follows: on each edge they act as �d2=dx2, with the
domain consisting of functions f such that

1. f 2 H 2.e/ for each edge e;

2. f is continuous on the whole graph;

3. at each vertex, the sum of the outgoing derivatives of f along all adjacent edges
is equal to zero (Kirchhoff condition);

4. the sum
P
e

kf k2
H2.e/

is �nite (automatic for a �nite graph).

HereH 2.e/ is the standard Sobolev space on the segment e D Œ0; le�.

2Usually called Kirchhoff Laplacians.
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We also denote by HG the analogous operator on G, with the exception that at
the boundary vertices v 2 B , Dirichlet conditions f .v/ D 0 are imposed instead
of Kirchhoff ones. The spectrum �.HG/ of this operator is discrete (see [2], Theo-
rem 3.1.1).

We denote by †D the (discrete under our conditions of �niteness or periodicity
of the graph) set of Dirichlet eigenvalues of all edges of �0, i.e.,

†D WD ¹�n�l�1e
�2ºn2N;e2E.�0/:

Let us also denote by

N W
M

e2E.G/
H 2.e/ �! l2.B/

the Neumann operator that for any function

f 2
M

e2E.G/
H 2.e/

and a vertex v 2 B produces the value at v equal to the sum of the outgoing derivatives
of f along the edges ofG adjacent to v. Here we denote by l2.B/ the d -dimensional
Hilbert space of functions on B .

We can now de�ne, for any � … �.HG/, the Dirichlet–to–Neumann operator
(in fact, a d � d -matrix) ƒ.�/ as follows: for any � 2 l2.B/ let u be the (existing
and unique) solution of the following problem:

8
<̂

:̂

�d2u=dx2 D �u on each e 2 E.G/;
u satis�es continuity and Kirchhoff condition at each vertex v … B;
ujB D �:

(2)

Then,
ƒ.�/� WD Nu:

It is clear that ƒ.�/ is a meromorphic function with poles at �.HD/ only (see [2],
Section 3.5, for more detailed consideration of Dirichlet–to–Neumann operator in the
quantum graph case and its relation to the resolvent ofHG).

2 Auxiliary statements

Let �0 2 �.HG/. As it was indicated before, and as we will see clearly in the next
section, it will be important for us that for any non-zero � 2 l2.B/ the vector function
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ƒ.�/� still has a pole at �0. It is clearly suf�cient to consider vectors � that belong
to the unit sphere S of l2.G/ � Cd .

The following auxiliary result is crucial for our goal:

Theorem 2.1 ([9]). 1. If for a given � 2 S and � D �0 the problem (2) has a
solution, then ƒ.�/� does not have singularity at �0.

2. If the problem (2) has no solution for � D �0 and any � 2 S , then for any �,
the following estimate holds in an (independent of �) neighborhood of �0:

kƒ.�/�k � C

j� � �0jk�k (3)

with a constant C independent of �.

Thus, we will be looking at graphs G with boundary B such that the problem (2)
has a solution only for zero Dirichlet data �. Rather than trying to describe all graphs
that have this property, we will provide (for any size d of the boundary B) construc-
tions when this does happen, which will be suf�cient for our purpose of gap opening.

Theorem 2.2. Let l0 > 0 and n be an odd natural number. Suppose that the pair
G;B satis�es the following conditions:

1. the graph G contains a cycle3 Z consisting of an odd number of edges of the
length l0;

2. each boundary vertex v 2 B either belongs toZ, or is connected to a vertex of
Z by a path of edges of length l0 each.

Then, for �0 D .n�=l0/
2, there exist a neighborhood U of �0 and a constant C such

that (3) holds for any � and � 2 U .

Proof. Without loss of generality, let us assume that Z is non-self-intersecting and
consider an edge e 2 Z (of length l0, as all edges in the cycle). The solution of (2)
for � D �0 on this edge has the form

u D a cos
�n�
l0
x
�

C b sin
�n�
l0
x
�
:

At the endpoints x D 0; l0, the second term vanishes. Since n is odd, the �rst term
changes its value from a to �a at these points. Going around an odd cycle, one
concludes that this is possible only if a D 0, and thus u vanishes at all vertices of Z.
In particular, it vanishes at all boundary vertices that belong to Z. For v 2 B nZ, as

3which can be assumed non-self-intersecting.
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there exists a path of edges of length l0 from v to a vertex from Z, where we know
that u vanishes, the same consideration shows that u vanishes at all vertices of the
path. Therefore, the problem (2) does not have a solution for non-zero �, and thus,
due to Theorem 2.1, the inequality (3) follows.

3 The main result

We are ready now to formulate and sketch the proof of the main result of this article:

Theorem 3.1. Let l0 > 0 and n be an odd natural number. Let also the d -regular
graph �0 satisfy (1), and �nite graphG with boundaryB , jBj D d and the decorated
graph � are de�ned as before. Suppose that the following conditions are satis�ed:

1. �0 D .n�=l0/
2 … †D, with dist.�0; †D/ D r > 0;

2. The decoration (resonator) G;B satis�es the conditions of Theorem 2.2.

Then there exists a punctured neighborhood of �0, depending on G, topology of �0,
and r only, which does not belong to the spectrum �.H/.

Proof. To understand the idea of the proof, let us assume �rst that the graph �0 (and
thus �) is �nite. Then the spectrum ofH is discrete. Thus, if � 2 �.H/, there exists
a non-zero eigenfunction u. Assume that the neighborhood of �0 has radius less than
r1 < r . Then it contains no elements of †D .

Removing all internal edges and vertices from each of the decorations in � , one
gets a disjoint union of edges of �0, since each former vertex v 2 �0 is replaced by
d vertices v1; : : : ; vd , see Figure 3. We denote this new graph z� .

Denoting

�v WD .u.v1/; : : : ; u.vd //
t ; �0

v WD
� du

dxe1

.v1/; : : : ;
du

dxed

.vd /
�t
;

where e1; : : : ; ed are the edges formerly adjacent to vertex v and coordinates xej
increase from the value zero at vertex v, one can rewrite the equation for u on � as
the following one on z�:

´
�u00 D �u on each edge;

�0
v D �ƒ.�/�v at each vertex v 2 V.�0/:
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removed

decoration

Figure 3. Decoration removed from a former vertex of degree 4

Since �0 is at a quali�ed distance from the Dirichlet spectrum †D, the resolvent
estimates for self-adjoint operators together with embedding theorems show that

X

e

k�k2
H2.e/

� M
X

v

k�vk2;

X

v

k�0
vk2 � M

X

v

k�vk2;

for some constantM depending only on the distance from the Dirichlet spectrum and
topology of �0. On the other hand, if � is suf�ciently close to �0 (how close, depends
onM and the decoration G), according to Theorem 2.1, one has

X

v

k�0
vk2 � C 2

j� � �0j2
X

v

k�vk2 > M
X

v

k�vk2:

This contradiction proves the claim of the theorem for �nite graphs.
In the case of in�nite graphs, generalized eigenfunctions with control of growth

need to be used (see [8] and [4]). The details will be provided elsewhere, but so far
we illustrate this on the simplest example of periodic graphs,

In the case of a periodic graph, assumption that � belongs to the spectrum of H
implies existence of a quasi-periodic Bloch–Floquet generalized eigenfunction �.x/,
which under theZp-shifts acquires only a phase shift (see details in [2], Section 4.2).
Then the above consideration for the �nite graph goes smoothly, if the summation
over edges and vertices of �0 is replaced by the same for the compact orbit space
graph �0=Zp .
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Another option in the periodic case is to use the Floquet–Bloch decomposition and
apply the above (�nite case) argument for each value of the quasi-momentum.4

4 Conclusions and �nal remarks

1. Although it is probably not easy to understand the case of a general “spider”
decoration, the main result of this article allows one to create spectral gaps
rather easily at prescribed locations. Indeed, the value .n�l�10 /2 involves an
arbitrary positive length l0 and odd natural number n, which gives one a sig-
ni�cant freedom of choosing location. As soon as this is done, one can easily
produce a spider decoration G that achieves the goal. For instance, if d D 4,
each degree 4 vertex can be replaced with the structure shown in Figure 4,
where we created an odd cycle through three boundary vertices and connected
the fourth one to them with a single edge.

2. It was shown in [9] on examples that for even cycles and/or even n the claim
of the Theorem 3.1 is incorrect.

3. The regularity condition on the graph �0 is not truly necessary, at least in the
case of �nite and periodic graphs. Indeed, one can manage variable degrees by
choosing different decorations, adjusted to each particular vertex and such that
the corresponding resonant values �0 agree.

4. Besides gap’s existence at a given location, its size is of importance. It depends
on the value of the constant C in (3). Our construction allows for a variety
of decorations achieving the gap at the same location. It would be interesting
to analyse the dependence of C on the decoration, to pick the most effective
designs.

5. More general vertex conditions can be considered and Kirchhoff conditions are
used just for simplicity.
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4 See [2], Chapter 4, for these notions and constructions.



On resonant spectral gaps in quantum graphs 221
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Figure 4. A degree 4 vertex replaced by a “spider” with edges of lengths l0
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Adiabatic theorem

for a class of stochastic differential equations

on a Hilbert space

Martin Fraas

In honor of Pavel Exner on the occasion of his 70th birthday

1 Introduction

We study solutions of a stochastic differential equation

" dX.s/ D L1.s/X.s/ ds C p
"L2.s/X.s/ dBs; s 2 .0; 1/ (1)

where L1; L2 are bounded operators on a Hilbert space H and Bs is a Brownian
motion. The equation is expressed in the slow time s D "t . The scaling of the
second term re�ects the Brownian scaling, "�1=2B"�1s is a Brownian motion in the
slow time for any " > 0. The adiabatic theory studies solutions of the equation in the
limit " ! 0.

A particular example of eq. (1) that motivates our study is a slowly driven stochas-
tic Schrödinger equation, a classical member of the family of quantum stochastic
equations derived by Hudson and Parthasarathy [10]. In their full extent quantum
stochastic equations describe a system linearly coupled to a bosonic free �eld. When
the coupling is through the position or momentum operator only the equations are
equivalent to classical Îto equations with the Brownian motion representing the bath.
Conditioning the dynamics on a continuous measurement on the free �eld gives non-
linear quantum �ltering equations derived by Belavkin [5]. These equations (and
their time-discrete counterparts) provide basic framework for quantum closed loop
feedback and control, see [20] and [7]. The goal of our line of research is to de-
velop a feedback theory for the adiabatic quantum control. In particular we plan to
develop an adiabatic theory for quantum �ltering equations. The adiabatic theory for
the unconditioned stochastic Schrödinger equation, derived here, is the �rst step in
this direction.
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Equation (1) has been widely studied in the deterministic case, L2.s/ � 0,
see [11], [4], [16], and references therein. The main feature of the adiabatic theory is
that solutions of eq. (1) can be described algebraically as follows:

(i) the evolution generated by the equation leaves the kernel of L1 invariant to the
leading order in ";

(ii) there is an asymptotic expansion that describes the motion inside the kernel and
the tunneling out of the kernel.

Leaving aside exact assumptions, it was understood by Avron and Elgart [1] that (i)
holds provided one can de�ne the projection on the kernel in a continuous manner.
On the other hand (as was long known), the expansion (ii) exists provided 0 is an
eigenvalue isolated from the rest of the spectra (so-called gap condition). We will
study only the case when the projection can be de�ned continuously irrespectively of
the Brownian path. Hence a generalization of (i) might not be surprising. However,
we will also derive an expansion (ii), which is somehow surprising because the gap
condition cannot hold for all realizations of the Brownian motion.

The most restrictive condition of our theory is a requirement that kerL1.s/ �
kerL2.s/ for each instant of time. Under this assumption we derive below an asymp-
totic expansion for the solution of a form

X.s/ D x0.s/C
p
"y1.s/C "x1.s/C � � �C "N�1=2yN .s/C "NxN .s/CO."

.NC1/=2/:

The standard integer power terms (x’s) are deterministic and given by the adiabatic
expansion in the absence of the stochastic term, L2 D 0. The novel half integer terms
are stochastic and describe propagation of an instantaneous error to the future. They
are expressed as backward Îto integrals arising from a Duhamel formula.

In the case of stochastic Schrödinger equation with a simple ground state1 the
stochastic term of order

p
" is orthogonal to the ground state and describes the tun-

neling out of the ground state. We derive a formula for this tunneling and describe its
full statistics. This extends the work [4] where a formula for the mean tunneling was
derived by studying a slowly driven Lindblad equation [15]. These two equations are
closely connected, the latter is obtained from the stochastic Schrödinger equation by
averaging over the randomness.

The article is organized as follows. In the remaining part of the introduction we
introduce our notation and discuss basics of the stochastic calculus necessary to fol-
low our exposition. In Section 2we describe the stochastic calculus in more details, in
particular we describe the two-sided stochastic calculus of Pardoux and Protter [14].
We also state there several technical propositions regarding the stochastic integration.

1Or any simple isolated eigenvalue.
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The reader not interested in proofs might safely skip the section. Section 3 gives our
assumptions and basic results. In the following Section 4 we apply these results to a
stochastic Schrödinger equation describing dephasing and derive the full statistics of
tunneling in the leading order. The last section contains the full adiabatic expansion
and its proof.

Remark 1.1. In view of the application we had in mind we chose to describe the
theory on a Hilbert space rather then on a Banach space. Extension to a �nite dimen-
sional Banach space is straightforward. In�nite dimensional Banach spaces introduce
several technical complications (starting with the very existence of the Îto calculus)
and we do not know what are natural assumptions on the geometry of the Banach
space for the extension of our results.

We comment on various complications with the Banach space theory throughout
the article.

We denote the scalar product on H by .�; �/ and the norm by k � k. We suppress
randomness from our notation and “D;�; : : : ” between random variables holds with
probability 1. EŒ�� stands for the expectation value with respect to the Brownian
motion, and k�k1 is the corresponding L1 norm. In particular for a random variable
X 2 H; kXk � kXk1. O."n/ is a random variable for which "�nkO."n/k; " 2
.0; 1/ is a family of random variables with uniformly bounded moments.

We make extensive use of Îto calculus and recall that for stochastic integrals f; g
and a function h it holds that

d.fg/ D dfg C f dg C df dg; d.h ı g/ D .h0 ı g/dg C 1

2
.h00 ı g/.dg/2;

where df dg should be interpreted according to the rules .ds/2 D dsdBs D 0,
.dBs/2 D ds. We also use the backward Îto calculus which comes with a similar set
of rules given in the following section. In a nutshell backward Îto calculus integrates
functions of the future, while Îto forward calculus integrates functions of the past.

To illuminate the difference between the forward/backward integrals we consider
the two-parameter stochastic propagator [18], U".s; s0/, associated to Equation (1).
This is a random variable that depends on the Brownian increments in the interval
.s0; s/. As a function of s, for a �xed s0, the propagator satis�es a forward Îto equation,

U".s; s
0/ D 1 C

ˆ s

s0
L1.t /U.t; s

0/dt C
ˆ s

s0
L2.t /U.t; s

0/dBt : (2)

On the other hand as a function of s0 it satis�es a backward Îto equation

U".s; s
0/ D 1 C

ˆ s

s0
U.s; t /L1.t /dt C

ˆ s

s0
U.s; t /L2.t /dBt : (3)
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Wewill not stress the difference between the backward and the forward integration in
our notation. If the integrand refers to the past (it is non-anticipatory) it is a forward
integral, if the integrand refers to the future it is a backward integral. In fact we use
a shorthand differential notation,

" dsU".s; s
0/ D dL.s/U".s; s

0/; U".s
0; s0/ D 1;

" ds0U".s; s
0/ D �U".s; s0/dL.s0/; U".s; s/ D 1;

as an equivalent of eq. (2) resp. eq. (3), where dL.s/ D L1.s/ds C p
"L2.s/dBs .

We end this short exposition with two standard relations that hold for both forward
and backward integration,

E

�
ˆ 1

0

Xt dBt

�
D 0; E

�
ˆ 1

0

Xt dBt


2�

D
ˆ 1

0

EŒkXtk2�dt; (4)

the latter equality can be understood using a formal relationEŒdBt dBs� D ı.t�s/dt .

2 A two-sided stochastic calculus

We are neither competent nor is it our purpose to explain the stochastic calculus in this
preliminary section. Several textbooks and monographs are devoted to this topic, the
author used a book ofMcKean [13] and the relevant chapters in a book of Simon [17].
The same applies to the two-sided integral constructed by Pardoux and Protter [14],
the interested reader should consult their article for details and proofs. We merely
repeat what is relevant for our exposition and we gather several lemmas that we shall
need for the proofs.

We consider a one-dimensional Brownian motion Bt ; 0 � t � 1 and the associ-
ated sigma algebra �.Bs; 0 � s � t /. For a continuous process Xt adapted to the
sigma algebra the forward Îto integral of Xt is de�ned as

ˆ s

0

Xt dBt D lim
N!1

2NX

kD1
X..k�1/=2N /s.B.k=2N /s � B..k�1/=2N /s/:

It is an important part of the de�nition that the increment points to the future and
hence B.k=2N /s � B..k�1/=2N /s and X..k�1/=2N /s are independent random variables.
A consequence of this choice is that the integral, as a function of s, is a martingale
and two basic formulas, cf. (4),

E

�
ˆ s

0

Xt dBt

�
D 0; E

��
ˆ s

0

Xt dBt

�2�
D
ˆ s

0

EŒX2t �dt;

hold true.
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Backward Îto integral is de�ned in an analogous manner. We consider a process
Yt adapted to a sigma algebra �.Bs�B1; t � s � 1/ and we de�ne the integral of Yt
by

ˆ 1

s

Yt dBt D lim
N!1

2NX

kD1
YsC.1�s/k=2N .BsC.1�s/k=2N � BsC.1�s/.k�1/=2N /:

Note that here the increments point to the past in order to ensure the independence
with the integrand. The backward Îto integral is a backward martingale as a function
of s and formulas corresponding to (4) hold true,

E

�
ˆ 1

s

Yt dBt

�
D 0; E

��
ˆ 1

s

Yt dBt

�2�
D
ˆ 1

s

EŒY 2t �dt:

We now consider particular processes Xt , Yt that arise as solutions of forward,
resp. backward, stochastic differential equations,

Xt D X0 C
ˆ s

0

b.Xt /dt C
ˆ s

0

�.Xt /dBt ;

Yt D Y0 C
ˆ 1

s

c.Yt /dt C
ˆ 1

s

.Yt /dBt ;

for some continuous functions b; c; �;  . The integral in the �rst equation being the
forward Îto integral, while the integral in the second equation being the backward
Îto integral. Correspondingly the �rst equation has a unique solution Xt that is a
non-anticipatory martingale and the second equation has a unique solution Yt that is
a backward martingale adapted to the associated sigma algebra.

We also use a differential form of these equations

dXt D b.Xt /dt C �.Xt /dBt ;

dYt D �c.Yt /dt � .Yt /dBt :

Although the notation makes no distinction between the forward and the backward
case one should keep in mind that these are distinct differentials.

A stochastic integral for joint functions of Xt ; Yt was constructed in [14]. Let
f .t; Xt ; Yt / be a continuous function of its arguments, then an integral

ˆ s

s0
f .t; Xt ; Yt/dBt
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can be de�ned in such a way that if f is independent of Yt (resp.Xt ) then the integral
coincides with the forward (resp. backward) Îto integral. Furthermore the integral
satis�es the following chain rule:

f .s; Xs ; Ys/ D f .s0; Xs0 ; Ys0/C
ˆ s

s0
@tf .t; Xt ; Yt /dt

C
ˆ s

s0
@Xf .t; Xt ; Yt/dXt C

ˆ s

s0
@Y f .t; Xt ; Yt /dYt

C 1

2

ˆ s0

s

@XXf .t; Xt ; Yt/.dXt /2 � 1

2

ˆ s0

s

@Y Y f .t; Xt ; Yt/.dYt /2;

(5)

where .dXt /2D�2.Xt /dt is interpreted according to the Îto rules .dt /2D dt dBt D0,
.dBt /2D dt .

In the following paragraphs we employ the formula (5) in a case with no second-
order derivatives to operator-valued processes Xt ; Yt . Due to the simplicity of that
case the operator-valued extension is clear. The matrix-valued version is discussed in
more details in [14]. We are not aware of an in�nite dimensional extension of [14],
the results below hence apply to that case provided the reader take such extension for
granted.

To demonstrate the power of the calculus we show that equations (2, 3) de�ne the
same propagator (the value of " is not important for the following considerations and
we skip the index) and that this propagator satis�es the semigroup property

U.s; 0/ D U.s; s0/U.s0; 0/:

To this end we �x a time t and let Xs D U.s; 0/ be a solution of eq. (2) and
Ys D zU.t; s/ be a solution of eq. (3). Then the above chain rule implies that for
any t � s � s0 we have

zU.t; s/U.s; 0/ D zU.t; s0/U.s0; 0/:

By choosing s D t and s0 D 0we get the sought equivalence zU.t; 0/ D U.t; 0/. Upon
erasing the tilde in the above equation we then establish the semigroup property.

In the following we will need two speci�c results concerning stochastic differen-
tial equations. The �rst is a particular version of the Duhamel formula, the second is a
prior bound on stochastic integrals. We formulate the bound for the forward integral,
the corresponding bound holds also for the backward integral.
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Lemma 2.1 (Duhamel formula). The solution of the differential eq. (2) satis�es a
relation

U.s; s0/ D V.s; s0/C
ˆ s

s0
U.s; t /L2.t /V .t; s

0/dBt ;

where V.s; s0/ is the solution of a deterministic equation,

dV.s; s0/ D L1.s/V .s; s
0/ds; V .s0; s0/ D 1:

Proof. The proof is again an application of the chain rule (5). Pick Xt D V.t; s0/,
Yt D U.s; t /; then for any s � t � t 0 � s0 the chain rule gives

U.s; t /V .t; s0/ D U.s; t 0/V .t 0; s0/ �
ˆ t

t 0
U.s; x/L2.x/V .x; s

0/dBx :

The statement of the lemma then follows by choosing t D s and t 0 D s0.

Lemma 2.2 (prior estimates of stochastic integrals). Let Xt 2 H be a non-anticipa-
tory stochastic process, then the following estimates hold true:

(a) E

�
ˆ 1

0

X.s/dBs


2n�

� .2n2 � n/nE

�
ˆ 1

0

kXsk2nds
�
; n � 1;

(b) Prob

�
ˆ 1

0

Xs dBs


2

> 

�
� e�=.8kXk21/C1=4; (6)

where kXk1 WD sup0�t�1 kXtk1.

Proof. Denote

‚t D
ˆ t

0

Xs dBs

and consider a real valued stochastic process �t D .‚t ; ‚t/. The stochastic differen-
tiation of this process gives d�t D ..Xt ; ‚t/C .‚t ; Xt //dBt C .Xt ; Xt /dt , which
is equivalent to an integral relation

�t �
ˆ t

0

kXsk2ds D
ˆ t

0

..Xs; ‚s/C .‚s; Xs//dBs: (7)

(a) We take the expectation of d�nt D n�n�1
t d�t C 1=2 n.n � 1/�n�2

t d�t d�t to
get an integral relation,

EŒ�nt � D n

ˆ t

0

EŒ�n�1
s kXsk2�ds C n.n � 1/

2

ˆ t

0

EŒ�n�2
s ..‚s; Xs/C .Xs ; ‚s//

2�ds;
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between the moments. As a �rst observation note that all integrands are non-negative
functions and hence EŒ�nt � is a non-decreasing function of t . Now we employ the
estimate ..Xs; ‚s/C .‚s; Xs//

2 � 4kXsk2�s and the Hölder inequality to get

EŒ�nt � � .nC 2n.n� 1//
ˆ t

0

EŒ�n�1
s kXsk2�ds

� .2n2 � n/
�
ˆ t

0

EŒ�ns �ds

�.n�1/=n�ˆ t

0

EŒkXsk2n�ds
�1=n

� .2n2 � n/.EŒ�nt �/n�1=n

�
ˆ t

0

EŒkXsk2n�ds
�1=n

:

In the last inequality we also used 0 � t � 1. Solving for the n-th moment establishes
the �rst inequality of the lemma.

To prove (b) we will use a well-known prior estimate on stochastic integrals [13],
Chapter 2.3. Let et ; 0 � t � 1 be a real non-anticipatory function and suppose that
´ 1

0
e2t dt < 1, then for any reals ˇ and ˛ the following bound holds true:

Prob

�
max
0�t�1

�
ˆ t

0

es dBs � ˛

2

ˆ t

0

e2s ds

�
> ˇ

�
� e�˛ˇ :

We note that the bound is an application of Doob’s martingale inequality.
Applying the bound to eq.(7) then implies

Prob

�
max
0�t�1

�
�t �
ˆ t

0

kXsk2ds � ˛

2

ˆ t

0

..Xs; ‚s/C .‚s; Xs//
2ds

�
> ˇ

�
� e�˛ˇ :

We claim that for 0 � t � 1,

�t �
ˆ t

0

kXsk2ds � ˛

2

ˆ t

0

..Xs; ‚s/C .‚s; Xs//
2ds

� �t � kXk21 � 2˛kXk21 max
0�s�1 �s:

(8)

In particular whenever maxRHS > ˇ then also max LHS > ˇ and the probability
of an event maxRHS > ˇ is smaller then the probability of an event max LHS > ˇ.
Combining this with the probability bound above we have

ProbŒ max
0�t�1 �t � kXk21 � 2˛kX1k2 max

0�t�1 �t > ˇ�

D Prob
h
max
0�t�1 �t >

ˇ C kXk21
1 � 2˛kXk21

i

� e�˛ˇ :
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Writing

 D ˇ C kXk21
1 � 2˛kXk21

and choosing the optimal ˛ D 1=.4kXk21/ we get Bound (6).
It remains to prove (8). The inequality follows from the inequality kXsk2�kXk21

and the inequality

..Xs; ‚s/C .‚s; Xs//
2 � 4kXk21k‚sk2 � 4kXk21 max

0�s�1 �s:

Note that for 0 � t � 1 an integral
´ t

0
of a positive constant can be bounded by that

constant.

An important consequence of the lemma is that

ˆ 1

0

Ot ."
n/dBt D O."n/;

provided the moments of kOt ."n/k are uniformly bounded with respect to t .
Generalization of Lemma 2.2 is one of the main technical obstacles of a Banach

space version of the theory. For �nite dimensional spaces all norms are equivalent
and the above bounds hold true up to a dimension dependent constant. On the other
hand we do not know if such bounds are available in the in�nite dimensional Banach
spaces.

The adiabatic expansion, which is the main result of our paper, has a natural
formulation in terms of the backward Îto integral. On the other hand it is often easier
– not principally, just thanks to a larger degree of familiarity – to perform calculations
with a forward Îto integral. Due to a special structure of integrals that appear in this
work we can always convert a backward integral to a forward integral.

Remark 2.3. The backward stochastic integrals of the type
´ s

0
U.s; s0/f .s0/dBs0 ,

where f is a deterministic function, can be converted into a forward integral thanks
to the semigroup relation U.s; s0/ D U.s; 0/U.s0; 0/�1. The relation expresses the
propagator in the future by a constant (with respect to the integration) times a prop-
agator in the past. We still need to convert the backward to a forward integral.

To see in details how the conversion works we take a second look at the forward
Îto integral that we de�ned by

I� D lim
N!1

2NX

kD1
X..k�1/=2N /s.B.k=2N /s � B..k�1/=2N /s/:
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Alternatively one can de�ne2

IC D lim
N!1

2NX

kD1
X.k=2N /s.B.k=2N /s � B..k�1/=2N /s/

and these two de�nitions are related by a quadratic variation of Xt ,

IC � I� D
ˆ s

0

dXt dBt D
ˆ s

0

�.Xt /dt:

For the integral under consideration this now implies, we introduce back " as this will
be useful at a later point in the article,

ˆ s

0

U".s; s
0/f .s0/dBs0 � U".s; 0/

ˆ s

0

U".s
0; 0/�1f .s0/dBs0

D � 1p
"
U".s; 0/

ˆ s

0

U".s
0; 0/�1L2.s0/f .s0/ds0;

(9)

where we have used "dU".s; 0/�1 D U".s; 0/
�1.�dL.s/ C L22.s/ds/. The second

line seems to diverge as " ! 0, but in fact it is of order 1 assuming kU".s; 0/k D 1.
Provided all the inverse operators exist on the range of L2 we have:

ˆ s

0

U".s; s
0/f .s0/dBs0 D U".s; 0/

ˆ s

0

U".s
0; 0/�1 Qf .s0/dBs0 CO.

p
"/; (10)

with Qf .s/ D Œ1C L2.s/.L1.s/ � L22.s//�1L2.s/�f .s/. To see this we use
ˆ s

0

U".s
0; 0/�1L2.s0/f .s0/ds0

D "

ˆ s

0

dU".s0; 0/�1.�L1.s0/C L22.s
0//�1L2.s0/f .s0/

C p
"

ˆ s

0

U".s
0; 0/�1L2.s0/.�L1.s0/C L22.s

0//�1L2.s0/f .s0/dBs0 :

An integration by parts shows that the �rst line of the RHS of the formula is of order
" and after plugging it into eq. (9) we obtain eq. (10).

3 Assumptions and basic results

We derive a solution of eq. (1) in the adiabatic limit " ! 0 under three additional
assumptions.

2This is sometimes referred to as a backward integral, we do not use this name to avoid confusion.
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Assumption 3.1. (A) For each s,L1.s/�1=2L22.s/ generates a contraction semigroup
and iL2.s/ is self-adjoint.

(B) L1.s/; s 2 .0; 1/ is a family of operators for which 0 remains a uniformly
isolated discrete eigenvalue.

(C) kerL2.s/ � kerL1.s/; s 2 .0; 1/.

Condition (A) is a suf�cient and necessary condition of a stochastic version of
Hille–Yosida theorem; It implies that U".s; s0/ is a contraction, i.e. kU".s; s0/k � 1.
This prevents an exponential blow up of solutions, and it is a standard condition in
the adiabatic theory, see [11], and [4].

Given assumption (A), a differentiation (see eq. (11) below) gives

" dkx.s/k2 D ..2ReL1.s/ � L22.s//x.s/; x.s//
for any solution x.s/ D U".s; 0/x.0/. Hence assumption (A) implies that the evolu-
tion is almost surely a contraction. The opposite statement holds in the autonomous
case.

Proposition 3.2 (stochastic Hille–Yosida). Let U.s; s0/ be a propagator associated
to a stochastic differential equation

dU.s; s0/ D L1U.s; s
0/ds C L2U.s; s

0/dBs ; U.s0; s0/ D 1:

Then the following are equivalent:

(i) U.s; s0/ is a contraction, i.e. kU.s; s0/k � 1;

(ii) L1 � 1=2L22 is a generator of a contraction semigroup and iL2 is self-adjoint.

Furthermore (ii) implies that L1 is a generator of contractions.

Proof. Without loss of generality we put s0 D 0, and throughout the proof we denote
x.s/ D U.s; 0/x.0/. The condition that U.s; 0/ is a contraction is then equivalent to
the statement that kx.s/k � kx.0/k for all initial vectors x.0/.

(ii) H) (i). By Îto rules we have

dkx.s/k2 D Œ.L1x.s/; x.s//C .x.s/; L1x.s//C .L2x.s/; L2x.s//�ds

C Œ.L2x.s/; x.s//C .x.s/; L2x.s//�dBs

D ..2ReL1 � L22/x.s/; x.s//ds;

(11)

where the last line is due to the assumption L�
2 D �L2. Recall that L1 � 1=2 L22

is a generator of contraction on a Hilbert space if and only if it is dissipative, i.e.
Re.L1 � 1=2 L22/ � 0. It then follows that dkx.s/k2 � 0.
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(i) H) (ii). We �rst prove that L2 generates isometries, by proving that both
L2 and �L2 generate contraction semigroups. Suppose to the contrary that there
exists an interval I D .I�; IC/ such that for ' 2 I and some x 2 H we have
ke'L2xk > kxk.

We consider the same decomposition of dL as in (i). We treat L1 � 1=2 L22
as a perturbation and express U.s/ � U.s; 0/ be a Duhamel formula. Since the
perturbation is deterministic this is the standard version of the formula,

U.s/ D eL2Bs C
ˆ s

0

eL2.Bs�Bs0 /
�
L1 � 1

2
L22

�
U.s0/ds0:

The event EI;s D ¹Bs 2 I and I� � 1 � Bt � IC C 1; 0 � t � sº has a non-zero
probability for any interval I and any s. By choosing s suf�ciently small we can then
achieve kU.s/xk > kxk, which is in contradiction with (i).

Since L�
2 D �L2 we have

dkx.s/k2 D Œ.L1x.s/; x.s//C .x.s/; L1x.s//C .L2x.s/; L2x.s//� ds

and since dkx.0/k � 0we conclude thatL1�1=2L22 is dissipative and hence generate
a contraction semigroup.

The last claim of the proposition is not related to a classi�cation of contraction
semigroups. To prove it, observe that if L2 is anti-selfadjoint then L22 is a generator
of contractions. Hence L1 � 1=2L22 C 1=2L22 is also a generator of contractions.
Alternatively L1 is a generator of the semigroup EŒXt �.

Remark 3.3. In a Banach space version of the proposition, the condition iL2 is self-
adjoint should be replaced byL2 is a generator of isometries. The proof is technically
more involved and requires a version of Trotter-Kato formula that does not seem to be
available in the literature ([12] assumes compact state space, while [8] and [6] assume
the Hilbert space structure). In particular that if dLj ; j D 1; 2 is the generator of a
propagator Uj .s; s0/, then the propagator U.s; s0/ generated by a sum dL1 C dL2
can be expressed as

U.s; s0/ D lim
N!1

U1.s; sN /U2.s; sN /U1.sN ; sN�1/U2 : : : U1.s1; s0/U2.s1; s0/;

where s � sN � � � � � s1 � s0 is any partition of the interval with a mesh going to
0 as N ! 1. This implies that if dL1 and dL2 generates contractions then so does
dL1 C dL2.

The gap condition, assumption (B), is also completely standard in the adiabatic
theory. Since L1 is a generator of contraction semigroup, kerL1 \ ranL1 D 0

(see [4]) and the gap condition implies

H D kerL1.s/˚ ranL1.s/: (12)
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The rather restrictive condition (C) allows us to de�ne the slow manifold and we
cannot imagine how it can be relaxed.

Before stating our results we shortly recall concepts from the adiabatic theory,
see [4] or [19] for a more thorough exposition. LetP.s/ be a C1 family of projections
on H then the equation

@

@s
T .s; s0/ D Œ PP.s/; P.s/�T .s; s0/; T .s0; s0/ D 1

de�nes parallel transport on ranP.s/. The name “parallel transport” is justi�ed by
two crucial properties:

(i) T .s; s0/P.s0/ D P.s/T .s; s0/;

(ii) a section x.s/ D T .s; s0/x.s0/ 2 ranP.s/ satis�es the equation

P.s/ Px.s/ D 0:

The parallel transport relevant to (1) is given by the projection P.s/ on kerL1.s/
in the direction of ranL1.s/. This projection is well de�ned thanks to the decom-
position eq. (12). Henceforth T .s; s0/ shall always refer to this particular projection,
unless stated otherwise.

Theorem 3.4. LetL1.s/; L2.s/ beC 3 families of operators satisfying (A)–(C). Then
the differential equation " dX.s/ D dL.s/X.s/ admits solutions of the form

X.s/ D a0.s/C p
"

ˆ s

0

U".s; s
0/L2.s0/b1.s0/ dBs0 C ".a1.s/C b1.s//CO."

3=2/;

where

a0.s/ D T .s; 0/a0.0/;

b1.s/ D L1.s/
�1 Pa0.s/;

a1.s/ D
ˆ s

0

T .s; s0/P.s0/ Pb1.s0/ ds0;

and the initial condition a0.0/ belongs to kerL1.0/.

We note that the integrand U".s; s0/ refers to the future and the integral is the
backward Îto integral. The theorem is an immediate corollary of a more general
Theorem 5.1 that describes the full expansion to all orders in ". We feature it sepa-
rately because we are not aware of any application of the expansion beyond the �rst
order.
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4 Stochastic Schrödinger equation

The theorem may be applied to a driven stochastic Schrödinger equation [9] (Chap-
ter 5),

"dj .s/i D �
�
iH.s/C 1

2
�.s/2

�
j .s/i ds � p

"i�.s/j .s/idBs;
where j i is a vector in a Hilbert space and H;� are self-adjoint operators. The
equation generates unitary evolution and the average state N�.s/ D EŒj .s/ih .s/j�
satis�es a Lindblad equation

" PN�.s/ D �i ŒH.s/; N�.s/�C �.s/ N�.s/�.s/ � 1

2
.�2.s/ N�.s/C N�.s/�2.s//: (13)

As in the deterministic case [4] (Section 3.1), we need to subtract the dynamical phase
before we can directly apply the adiabatic theorem. For an integrable function E.s/
and a square integrable function3

p
.s/ the transformation H.s/ ! H.s/ � E.s/,

�.s/ ! �.s/�p.s/ transforms the solution of the stochastic Schrödinger equation
according to

j .s/i ! e
i="
´ s

0 E.t/dtCi=
p

"
´ s

0

p
.t/dBt j .s/i:

For simplicity we consider a d -dimensional Hilbert space and H.s/; �.s/ with
simple eigenvalues E0.s/ D 0; : : : ; Ed�1.s/,

p
0.s/ D 0; : : : ;

p
d�1.s/ corre-

sponding to a joint normalized eigenbasis j 0.s/i; : : : ; j d�1.s/i. The eigenstate
j k.s/i is determined only up to a phase and without loss of generality we assume
that it is chosen in accordance with the parallel transport associated to the projec-
tion j k.s/ih k.s/j. Primarily, we shall study solutions j ".s/i of the stochastic
Schrödinger equation with an initial condition j ".0/i D j 0.0/i. Likewise we can
study solutions with an initial condition j k.0/i; k 2 .1; d � 1/ after applying the
above mentioned transformations.

Of particular interest is the tunneling out of the ground state de�ned as

T".s/ D 1 � jh 0.s/ j  ".s/ij2

D
d�1X

kD1
jh k.s/ j  ".s/ij2:

Theorem 4.1. LetH.s/; �.s/ be as above. Then the stochastic Schrödinger equation
admits a solution

j ".s/i D j 0.s/i C p
"

d�1X

kD1

�
ˆ s

0

D.k/
" .s; s0/tk.s0/dBs0

�
j k.s/i CO."/;

3The arti�cial square root in the de�nition of  was introduced in order to have the �nal results in
the same form as in the Lindblad case.
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where

D.k/
" .s; s0/ D e�i="

´ s
s0 Ek.t/dt�i=

p
"
´ s

s0
p
k.t/dBt ;

tk.s/ D �i
p
k.s/

h k.s/ j P 0.s/i
�iEk.s/ � 1=2 k.s/

:

In particular for the tunneling we have T".s/ D "
Pd�1
kD1 Tk.s/CO."

3=2/,

Tk.s/ D
ˇ̌
ˇ̌
ˆ s

0

D.k/
" .s; s0/tk.s0/dBs0

ˇ̌
ˇ̌
2

:

In the leading order, terms Tk.s/ are independent random variables, and each term
has an exponential distribution with mean

EŒTk.s/� D
ˆ s

0

jtk.s0/j2ds0: (14)

Proof. Conditions (A)–(C) for L1.s/ D �.iH.s/C 1=2�.s/2/ andL2.s/ D �i�.s/
are clearly satis�ed. U".s; s0/ is a unitary propagator and L1.s/ has eigenvectors
j k.s/i corresponding to simple discrete eigenvalues �iEk.s/ � 1=2 k.s/. In view
of Theorem 3.4 and the discussion above we then have in the leading order

U".s; s
0/j k.s0/i D D.k/

" .s; s0/j k.s/i CO.
p
"/: (15)

We proceed to the next order for the case with the initial condition a0.0/ D j 0.s/i.
In order to do so we need to compute the coef�cient b1.s/. We express it in the joint
eigenbasis ofH and � ,

b1.s/ D
d�1X

kD1

h k.s/ j P 0.s/i
�iEk.s/ � 1=2 k.s/

j k.s/i:

It then follows from Theorem 3.4 that

j ".s/i D j 0.s/i C p
"

d�1X

kD1

�
ˆ s

0

U".s; s
0/tk.s0/j k.s0/idBs0

�
CO."/;

and by substituting from eq. (15) we obtain the �rst equation of the theorem. The
expression for the tunneling is an immediate consequence. To compute the mean of
the tunneling we use Formula (4). It remains to show that transitions to different
excited states are independent in the leading order and that the distribution of the
tunneling is exponential. This will require some effort.
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We recall that exponential probability distribution with mean � has a probability
density function p.x/ D ��1e�x=� and is uniquely characterized by its moments
´

p.x/xn D nŠ�n. Our strategy is to compute the moments by establishing a recur-
rence relation between EŒT n" � and EŒT n�1

" �.
For convenience we �rst express the tunneling as a forward stochastic integral.

Using the computation in Remark 2.3, eq. (10), with L1 D .�iEk � 1=2 k/ and
L2 D �ipk we have

ˆ s

0

D.k/
" .s; s0/tk.s0/dBs0 D D.k/

" .s; 0/

ˆ s

0

D.k/
" .0; s0/rk.s0/dBs0 CO.

p
"/;

where

rk.s/ D �i
p
k.s/

h k.s/ j P 0.s/i
.�iEk.s/C 1=2 k.s//

:

We hence obtain a forward expression for the tunneling in the leading order,

Tk.s/ D
ˇ̌
ˇ̌
ˆ s

0

D.k/
" .0; s0/rk.s0/dBs0

ˇ̌
ˇ̌
2

:

Note that jtk.s/j2 D jrk.s/j2, as it has to be for the mean to remain the same.
We start by considering a single transition Tk.s/. Îto rules imply

dTk.s/ D
�
ˆ s

0

xD.k/
" .0; s0/ Nrk.s0/dBs0

�
D.k/
" .0; s/rk.s/dBs C c.c. C jrk.s/j2ds;

and

.dTk.s//
2 D

�
ˆ s

0

xD.k/
" .0; s0/ Nrk.s0/dBs0

�2
D.k/
" .0; s/2r2k.s/ds C c.c.

C 2Tk.s/jrk.s/j2ds:

Using integral version of dT n D nT n�1dT C 1=2 n.n � 1/T n�2dT dT and taking
the expectation value we have (use the �rst formula in eq. (4))

EŒT nk .s/� D n

ˆ s

0

EŒT n�1
k .s0/�jrk.s0/j2ds0 C n.n � 1/

ˆ s

0

EŒT n�1
k .s0/�jrk.s0/j2ds0

C
�
n.n � 1/

2

ˆ s

0

E

�
T n�2.s0/

�
ˆ s0

0

xD.k/
" .0; s00/rk.s00/dBs00

�2

D.k/
" .0; s0/2r2k .s

0/ds0
�

C c.c.

�
:
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Integrating by parts with respect to the factor e�i2="
´ s0

0 Ek.t/dt shows that the second
line is of order "1=2, whence

EŒT nk .s/� D n2
ˆ s

0

EŒT n�1
k .s0/�jrk.s0/j2ds0 CO."

1=2/:

Using this relation recursively we arrive at

EŒT nk .s/� D .nŠ/2
ˆ

0�s1�����sn�s

nY

iD1
jrk.si /j2ds1 : : : dsn CO."

1=2/

D nŠ

�
ˆ s

0

jrk.s0/j2ds0
�n

CO."
1=2/;

which is exactly the relation characterizing exponential distribution.
Now consider two terms Tk.s/; Tl.s/ for l ¤ k. By Îto’s formula we have

EŒTk.s/Tl .s/� D
ˆ s

0

.EŒdTk.s
0/Tl.s0/�C EŒTk.s

0/dTl.s0/�C EŒdTk.s
0/dTl.s0/�/

D
ˆ s

0

.jrk.s0/j2EŒTl.s0/�C jrl .s0/j2EŒTk.s0/�/ds0 CO.
p
" /

D EŒTk.s/�EŒTl.s/�CO.
p
" /:

That the last term on the RHS of the �rst line is of order "1=2 can be shown by inte-
gration by parts. Hence we showed that Tk and Tl are uncorrelated and we proceed
to higher powers by induction. Suppose that T n�1

k
and Tm

l
(T n
k
and Tm�1

l
) are un-

correlated to the leading order, then we have

EŒT nk T
m
l � D

ˆ

.EŒd.T nk /T
m
l �C EŒT nk d.T

m
l /�C EŒd.T nk /d.T

m
l /�/

D
ˆ

.n2jrkj2EŒT n�1
k Tml �Cm2jrl j2EŒT nk Tm�1

l �/CO.
p
" /

D
ˆ

.d.EŒT nk �/EŒT
n
l �C EŒT nk �d.EŒT

n
l �//CO.

p
" /

D EŒT nk �EŒT
n
l �CO.

p
" /:

So to leading order Tk and Tl are independent, which �nishes the proof.

Remark 4.2. The main de�ciency of the expansion in Theorem 3.4 is that it involves
the propagator itself, albeit in a higher order. It is straightforward, although cumber-
some, to recursively eliminate the propagator. We do not know of any more direct
manner to derive higher order terms in the expansion.
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Formula (14) for the mean tunneling has been derived in [4] using the correspond-
ing adiabatic Lindblad equation, eq. (13), and subsequently used to study an optimal
sweeping rate [2] and Landau–Zener tunneling with dephasing [3]. The mean tun-
neling is additive, which was interpreted as the tunneling in the dephasing case being
local and unidirectional. The full statistics of the tunneling derived here, offers an
unexpected twist. If the tunneling was additive it would have a Gaussian distribution,
not an exponential one. It follows that only the mean tunneling is additive, while
higher order cumulants exhibit non-local behavior typical for the Hamiltonian evo-
lution.

5 Full expansion and its proof

Now we present the main theorem, that describes the expansion to all orders.

Theorem 5.1. Let L1.s/; L2.s/ be CNC2-families of operators satisfying assump-
tions (A)–(C).

1. The differential equation " dX D dL.s/X admits solutions of the form

X.s/ D
NX

nD0
"n
�
"�1=2

ˆ s

0

U".s; s
0/L2.s0/bn.s0/dBs0 Can.s/Cbn.s/

�
C"N rN ."; s/

with

• an.s/ 2 kerL1.s/; bn.s/ 2 ranL1.s/,

• initial data x.0/ is speci�ed by arbitrary an.0/ 2 kerL1.0/; however, the
bn.0/ are determined below by the an.0/ and together de�ne the “slow man-
ifold.”

2. The coef�cients are determined recursively through .n D 0; : : : ; N /

b0.s/ D 0;

an.s/ D T .s; 0/an.0/C
ˆ s

0

T .s; s0/ PP.s0/bn.s0/ds0;

bnC1.s/ D L1.s/
�1. PP.s/an.s/C P?.s/ Pbn.s//:

3. The remainder is uniformly small in " and is of the form

rN ."; s/ D p
"

ˆ s

0

r
.2/
N ."; s0/dBs0 C "r

.1/
N ."; s/;

where r .1/N ."; s/; r
.2/
N ."; s/ are uniformly bounded functions. In particular, the er-

ror term rN ."; s/ D O.
p
"/.
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Proof. Since L1.s/ is a generator of a contraction semigroup (see the last claim in
Proposition 3.2) we can use the standard deterministic adiabatic theory for an equa-
tion "d zX.s/ D L1.s/ zX.s/. Using the expansion in Theorem 6 in [4] the equation
has a solution,

zX.s/ D
NX

nD0
"n .an.s/C bn.s//C "NC1r .1/N ."; s/;

where r .1/N ."; s/ is uniformly bounded. The de�nition of a-terms and b-terms is such
that an.s/ 2 ker.L1.s//, and bn.s/ belongs to the range of L1.s/.

By the Duhamel formula of Lemma 2.1 and assumption (C) we then have a
solution of the stochastic equation,

X.s/ D
NX

nD0
"n
�
"�1=2

ˆ s

0

U".s; s
0/L2.s0/bn.s0/ dBs0 C an.s/C bn.s/

�

C "NC1r .1/N ."; s/C "NC1=2

ˆ s

0

U".s; s
0/L2.s0/r .1/N ."; s0/dBs0 :

With r .2/N ."; s0/ D U".s; s
0/L2.s0/r .1/N ."; s0/, this is exactly the expansion of the

theorem.
That r .2/n ."; s/ is uniformly bounded (with probability 1) follows from assump-

tion (A), which implies that kU".s; s0/k � 1. That the error is of the order O.
p
" /

follows from Lemma 2.2, or more precisely from a backward integration counterpart
of the lemma. In fact, Lemma 2.2(a) is suf�cient for that conclusion, Lemma 2.2(b)
gives complementary estimates for the probability distribution of the error terms.

We conclude with several remarks regarding the generality of our exposition.
Including several independent noises, i.e. L2dB ! P

k L
.k/
2 dBk where Bk are

independent Brownian motions, is straightforward. In particular the tunneling de-
scribed in Section 4 turns into a sum over the noises, each giving an independent
contribution to the tunneling. Boundedness of L1; L2 can surely be relaxed, and an
adiabatic theorem with errors of order O.1/ should hold without the gap condition,
assumption (B). We do not plan to elaborate on any of these generalizations. On the
other hand it is important to allow generatorsL1.s/,L2.s/ to depend on the Brownian
motion, Bt , for s � t � 0. We hope to address this question in a further work.

Acknowledgments. I thank Gian Michele Graf and Eddy Mayer-Wolf for fruitful
discussions.

A part of the work was done while I visited the Isaac Newton Institute in Cam-
bridge, UK. Support by the Swiss National Science Foundation is acknowledged.



242 M. Fraas

References

[1] J. E. Avron and A. Elgart, Adiabatic theorem without a gap condition. Comm.
Math. Phys. 203 (1999), no. 2, 445–463. MR 1697605 Zbl 0936.47047

[2] J. E. Avron, M. Fraas, G. M. Graf, and P. Grech, Optimal time-schedule for
adiabatic evolution. Phys. Rev. A 82 (2010), 040304.

[3] J. E. Avron, M. Fraas, G. M. Graf, and P. Grech, Landau–Zener tunneling for
dephasing lindblad evolutions. Comm.Math. Phys. 305 (2011), no. 3, 633–639.
MR 2819409 Zbl 1221.81118

[4] J. E. Avron, M. Fraas, G. M. Graf, and P. Grech, Adiabatic theorems for gener-
ators of contracting evolutions. Comm.Math. Phys. 314 (2012), no. 1, 163–191.
MR 2954513 Zbl 1256.47062

[5] V. P. Belavkin, Quantum stochastic calculus and quantum nonlinear �ltering.
J. Multivariate Anal. 42 (1992), no. 2, 171–201. MR 1183841 Zbl 0762.60059

[6] D. Dürr, G. Hinrichs, and M. Kolb, On a stochastic trotter formula with ap-
plication to spontaneous localization models. J. Stat. Phys. 143 (2011), no. 6,
1096–1119. MR 2813787 Zbl 1226.82050

[7] J. Gough and M. R. James, Quantum feedback networks: Hamiltonian for-
mulation. Comm. Math. Phys. 287 (2009), no. 3, 1109–1132. MR 2486674
Zbl 1196.81152

[8] J. Gough, O. Obrezkov, and O. G. Smolyanov, Randomized hamiltonian Feyn-
man integrals and Schrödinger–Itô stochastic equations. Izv. Ross. Akad. Nauk
Ser. Mat. 69 (2005), no. 6, 3–20. In Russian. English translation, Izv. Math. 69
(2005), no. 6, 1081–1098. MR 2190085 Zbl 1133.35109

[9] A. S. Holevo, Statistical structure of quantum theory. Lecture Notes in Physics.
New Series m: Monographs. Physics and Astronomy - Online Library. m67.
Springer, Berlin, 2001.

[10] R. L. Hudson and K. R. Parthasarathy, Quantum Ito’s formula and stochas-
tic evolutions. Comm. Math. Phys. 93 (1984), no. 3, 301–323. MR 0745686
Zbl 0546.60058

[11] A. Joye, General adiabatic evolution with a gap condition. Comm. Math.
Phys. 275 (2007), no. 1, 139–162. MR 2335771 Zbl 1176.47032

[12] T. G. Kurtz, A random trotter product formula. Proc. Amer. Math. Soc. 35
(1972), 147–154. MR 0303347 Zbl 0255.47051

http://www.ams.org/mathscinet-getitem?mr=1697605
http://zbmath.org/?q=an:0936.47047
http://www.ams.org/mathscinet-getitem?mr=2819409
http://zbmath.org/?q=an:1221.81118
http://www.ams.org/mathscinet-getitem?mr=2954513
http://zbmath.org/?q=an:1256.47062
http://www.ams.org/mathscinet-getitem?mr=1183841
http://zbmath.org/?q=an:0762.60059
http://www.ams.org/mathscinet-getitem?mr=2813787
http://zbmath.org/?q=an:1226.82050
http://www.ams.org/mathscinet-getitem?mr=2486674
http://zbmath.org/?q=an:1196.81152
http://www.ams.org/mathscinet-getitem?mr=2190085
http://zbmath.org/?q=an:1133.35109
http://www.ams.org/mathscinet-getitem?mr=0745686
http://zbmath.org/?q=an:0546.60058
http://www.ams.org/mathscinet-getitem?mr=2335771
http://zbmath.org/?q=an:1176.47032
http://www.ams.org/mathscinet-getitem?mr=0303347
http://zbmath.org/?q=an:0255.47051


Adiabatic theorem for stochastic differential equations 243

[13] H. P. McKean, jr., Stochastic integrals. Probability and Mathematical Statis-
tics, 5. Academic Press, New York and London, 1969. MR 0247684
Zbl 0191.46603

[14] E. Pardoux and P. Protter, A two-sided stochastic integral and its calculus.
Probab. Theory Related Fields 76 (1987), no. 1, 15–49. MR 0899443
Zbl 0608.60058

[15] M. S. Sarandy and D. A. Lidar, Adiabatic approximation in open quantum sys-
tems. Phys. Rev. A 71 (2005), 012331.

[16] J. Schmid, Adiabatic theorems with and without spectral gap condition for non-
semisimple spectral values. In P. Exner, W. König, and H. Neidhardt (eds.),
Mathematical results in quantum mechanics. Proceedings of the QMath 12
Conference held at Humboldt University, Berlin, September 10–13, 2013.
World Scienti�c, Hackensack, N.J., 2015, 355–362. MR 3381167
Zbl 1339.81044

[17] B. Simon, Functional integration and quantum physics. Pure and Applied
Mathematics, 86. Academic Press, New York and London, 1979.
ISBN 0-12-644250-9 MR 0544188 Zbl 0434.28013

[18] A. V. Skorokhod, Operator stochastic differential equations and stochastic
semigroups. Uspekhi Mat. Nauk 37 (1982), no. 6(228), 157–183. In Rus-
sian. English translation, Russian Math. Surveys 37 (1982), no. 6, 177–204.
MR 0683278 Zbl 0519.60071

[19] S. Teufel, Adiabatic perturbation theory in quantum dynamics. Lecture Notes
in Mathematics, 1821. Springer, Berlin, 2003. ISBN 3-540-40723-5
MR 2158392 Zbl 1053.81003

[20] H. M. Wiseman and G. J. Milburn, Quantum measurement and control.
Cambridge University Press, Cambridge, 2010. ISBN 978-0-521-80442-4
MR 2761009 Zbl 05651600

http://www.ams.org/mathscinet-getitem?mr=0247684
http://zbmath.org/?q=an:0191.46603
http://www.ams.org/mathscinet-getitem?mr=0899443
http://zbmath.org/?q=an:0608.60058
http://www.ams.org/mathscinet-getitem?mr=3381167
http://zbmath.org/?q=an:1339.81044
http://www.ams.org/mathscinet-getitem?mr=0544188
http://zbmath.org/?q=an:0434.28013
http://www.ams.org/mathscinet-getitem?mr=0683278
http://zbmath.org/?q=an:0519.60071
http://www.ams.org/mathscinet-getitem?mr=2158392
http://zbmath.org/?q=an:1053.81003
http://www.ams.org/mathscinet-getitem?mr=2761009
http://zbmath.org/?q=an:05651600




Eigenvalues of Schrödinger operators

with complex surface potentials

Rupert L. Frank

To Pavel Exner on the occasion of his 70th birthday

1 Introduction and main results

Recently there has been great interest in bounds on eigenvalues of Schrödinger oper-
ators with complex potentials. A conjecture of Laptev and Safronov [19] states that
for a certain range of p’s, all eigenvalues of a Schrödinger operator lie in a disk in the
complex plane whose radius is bounded from above in terms of only the Lp norm of
the potential. This conjecture was motivated by a corresponding result by Abramov,
Aslanyan and Davies [1] in one dimension and with p D 1. In one part of the pa-
rameter regime the conjecture was proved in [9], and in the other part it was proved
in [15] for radial potentials. For arbitrary potentials it is still open.

In this paper we deal with the analogue of this question for potentials supported
on a hyperplane, which is a special case of what is called a ‘leaky graph Hamiltonian’
in [8]. More speci�cally, in Rd , d � 2, we introduce coordinates x D .x0; xd / with
x0 2 Rd�1 and xd 2 R and consider the Schrödinger operator

��C �.x0/ı.xd / in L2.Rd / (1)

with a complex function � onRd�1. If � 2 Lp.Rd�1/ for some p > 1 in d D 2 and
p � d � 1 in d � 3, this formal expression can be given meaning as an m-sectorial
operator in L2.Rd / through the quadratic form

ˆ

Rd

jr .x/j2dx C
ˆ

Rd�1

�.x0/j .x0; 0/j2dx0 (2)

with form domain H 1.Rd /. If also p < 1, it is a consequence of relative form
compactness that the spectrum of this operator in C n Œ0;1/ consists of isolated
eigenvalues of �nite algebraic multiplicities; this is discussed below in more detail.
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For real � , the variational principle for the lowest eigenvalue and the Sobolev
trace theorem imply that any eigenvalue E satis�es

E � �
�
C;d

ˆ

Rd�1

�.x0/2Cd�1
� dx0

�1=

for all  > 0 with a constant C;d independent of � .

Our main result is an analogue of this bound for complex � .

Theorem 1.1. Let d � 2 and 0 <  � 1=2. There is a constant D;d such that for
any complex � 2 L2Cd�1.Rd�1/ and any eigenvalue E 2 C of ��C �.x0/ı.xd /
in L2.Rd /,

jEj � D;d

ˆ

Rd�1

j�.x0/j2Cd�1dx0:

When  > 1=2 we cannot show that eigenvalues are bounded, but we can show
that, if .Ej / is a sequence of eigenvalues with ReEj ! 1, then ImEj ! 0. The
following theorem gives a quantitative version of this. We use the notation

ı.z/ WD dist.z;C n Œ0;1// D
´

jzj if Re z � 0;

j Im zj if Re z > 0:
(3)

Theorem 1.2. Let d � 2 and  > 1=2. There is a constant D;d such that for any
complex � 2 L2Cd�1.Rd�1/ and any eigenvalue E 2 C of �� C �.x0/ı.xd / in
L2.Rd /,

jEj1=2ı.E/
.2�1/=2 � D;d

ˆ

Rd�1

j�.x0/j2Cd�1dx0:

In dimensions d � 3 we also obtain a criterion for the absence of eigenvalues.

Theorem 1.3. Let d � 3. There is a constant D0;d such that for any complex
� 2 Ld�1.Rd�1/, if

ˆ

Rd�1

j�.x0/jd�1dx0 < D�1
0;d ;

then ��C �.x0/ı.xd / in L2.Rd / has no eigenvalue.
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These three theorems are the analogues of the results in [9] and [10] for Schrö-
dinger operators with usual potentials and our proof will follow the strategy in those
papers (which, in turn, was motivated by [1]).

Our �nal result concerns bounds on sums of powers of eigenvalues of �� C
�.x0/ı.xd /, which are analogues of the Lieb–Thirring inequalities [21]. Such bounds
were shown in [11] for real � and, using the technique from [12], extended to complex
� provided one only considers eigenvalues outside of a cone around the positive real
axis. The following theorem is useful for eigenvalues close to the positive real axis.

Theorem 1.4. Let 0 <  < 1=2 if d D 2 and 0 <  � 1=2 if d � 3. Let � D 0 if
 < .d�1/=.4d�6/ and � > ..4d�6/�.d�1//=.d�1�2/ if  � .d�1/=.4d�6/. Then there
is a constant L;d;� such that, for any complex � 2 L2Cd�1.Rd�1/, the eigen-
values .Ej / of ��C �.x0/ı.xd / in L2.Rd /, repeated according to their algebraic
multiplicity, satisfy

�X

j

ı.Ej /jEj j�.1��/=2
�2=.1C�/

� L;d;�

ˆ

Rd�1

j�.x0/j2Cd�1dx0:

This is the analogue of a result from [13] for Schrödinger operators with usual
potentials. The method from [10] can probably be used to derive bounds for  > 1=2,
but to keep the exposition brief we do not pursue this here.

Our proof of Theorem 1.4 identi�es, in the spirit of [5], [3], [6], [7], [13], and [10],
the eigenvalues of (1) with zeroes of an analytic function. As explained in detail
in [10], a result on zeroes of analytic functions [3] plus inequalities on regularized
determinants reduce the proof to resolvent bounds in trace ideals. These latter bounds
are the content of Proposition 5.1 and constitute the technical main result of this paper.

In conclusion we mention that there are two further methods which yield inequal-
ities for sums of powers of eigenvalues. One method from [6] relies on averaging the
bounds from [11] with respect to the opening angle of the cone. Another method
from [17] is based on an extension of an inequality of Kato; see also [10].

Remark 1.5. All the theorems reported here have an obvious analogue for the
operator �� in L2.RdC/ with boundary condition @ =@� D �� . (Here RdC D
¹x 2 Rd W xd > 0º and @=@� D �@=@xd .) This simply comes from the fact that the
operator (1) leaves the spaces of functions which are even and odd with respect to xd
invariant and on the former subspace it is unitarily equivalent to �� in L2.RdC/ with
boundary condition @ =@� D �1=2 � .
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2 Uniform Sobolev inequalities

In this section we prove a Sobolev inequality for functions on RN . (Later on, in the
proof of Theorems 1.1, 1.2, and 1.3 we will choose N D d � 1.) The inequality
involves the operator

p�� � z and the crucial point is that the constant in the in-
equality depends only on jzj but not on the argument of z. Such uniform Sobolev
inequalities go back to Kenig, Ruiz and Sogge [18] for �� � z and, in fact, our
theorem follows by modifying their proof.

Since it comes at no extra effort, we deal with the operators .���z/s for arbitrary
0 < s � .NC1/=2. This operator acts as multiplication by .�2 � z/s in Fourier space.
We will assume that z 2 C n Œ0;1/, so �2 � z 2 C n .�1; 0� for all � 2 Rd and we
can de�ne .�2 � z/s D exp.s log.�2 � z// with the principal branch of the logarithm
on C n .�1; 0�.

Proposition 2.1. Let 0 < s � .NC1/=2 and assume that
8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

2
N

N C 2s
� p � 2

N C 1

N C 1C 2s
if s < N=2;

1 < p � 2
N C 1

N C 1C 2s
if s D N=2;

1 � p � 2
N C 1

N C 1C 2s
if s > N=2:

Then there is a constant CN;p;s such that for all u 2 W 2s;p.RN / and z 2 Cn Œ0;1/,

kukp0 � CN;p;s jzj�.NpC2ps�2N/=.2p/k.�� � z/sukp: (4)

Moreover, if 2.NC1/=.NC1C2s/ < p � 2, there is a constant CN;p;s such that for all
u 2 W 2s;p.RN / and z 2 C n Œ0;1/,

kukp0 � CN;p;s ı.z/
�.NpC2ps�2N�2Cp/=.2p/ jzj�.2�p/=.2p/k.��� z/sukp : (5)

We recall that ı.z/ appearing in (5) was de�ned in (3). Moreover, p0 D p=.p�1/.

Proof. Let � 2 C with Re � � 0 and consider the operator

T�.z/ WD e�
2

.�� � z/�� D e�
2

e�� log.���z/;

which is again de�ned as a multiplier in Fourier space with the same convention
for the branch of the logarithm. Note that this is essentially the family of operators
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from [18] (proof of Theorem 2.3) with � D ��. Clearly, by bounding the multiplier
in Fourier space, one �nds

kT�.z/kL2!L2 � A if Re � D 0 (6)

with a constant A depending only on N . Moreover, it is shown in [18] (proof of
Theorem 2.3) that

kT�.z/kL1!L1 � BRe � jzj�.2Re��N/=2 if N=2 < Re � � .NC1/=2 (7)

with a constant BRe � depending only on N and Re �. (Strictly speaking, this bound
was only shown there with a constant independent of z for jzj � 1, but the stated
bound simply follows from this by scaling. Moreover, the assumption N � 3 in [18]
is irrelevant for the proof of (7).)

Since Ts.z/ coincides, up to a multiplicative constant, with the inverse of the
operator .�� � z/s , if s > N=2 and p D 1, we can choose � D s in (7) and obtain
the bound in the proposition.

Forp > 1 as in the theorem, with the extra assumption p > 2N=.NC2s/ if s < N=2,
we de�ne t WD sp=.2�p/ and note that N=2 < t � .NC1/=2 and t > s. Since the
operators T�.z/ depend analytically on �, we can use complex interpolation with the
lines Re � D 0 and Re � D t and obtain

kTs.z/kLp!Lp0 � A2
.p�1/=pB

.2�p/=p
ps=.2�p/

jzj�.NpC2ps�2N/=.2p/;

which again gives the claimed bounds.
For the �rst part of the proposition it remains to prove the bound forpD2N=.NC2s/

and s < N=2. Again as in [18] (proof of Theorem 2.3) we consider

zT�.z/ WD e�
2

�
�N � 2�

2

� .�� � z/�� D e�
2

�
�N � 2�

2

�e�� log.���z/:

Bound (6) remains valid for zT�.z/ and, as shown in [18] (proof of Theorem 2.3),
bound (7) holds even for Re � D N=2 DW t . If s < N=2 one has 0 < s < t and therefore
one can again use complex interpolation to deduce an L2N=.NC2s/ ! L

2N=.N�2s/

bound for zTs.z/. This completes the proof of the proposition.
To prove the second part of the proposition we note that

kuk2 � ı.z/�sk.�� � z/suk2:

This, together with (4) for p D 2.NC1/=.NC1C2s/, implies (5) by standard (Riesz–
Thorin) complex interpolation.
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3 Bound on the Birman–Schwinger operator

Let us give the details of the de�nition of the operator (1) using the method from [10]
(Section 4).

We consider the operator H0 WD �� in the Hilbert space H WD L2.Rd / with
form domain H 1.Rd /. Moreover, let G WD L2.Rd�1/ and consider the operators G
and G0 from H to G with domain H 1.Rd / de�ned by

.G0 /.x
0/ WD

p
�.x0/ .x0; 0/;

.G /.x0/ WD
p

j�.x0/j .x0; 0/:

(Here we write
p
�.x0/ D �.x0/=

pj�.x0/j if �.x0/ ¤ 0 and
p
�.x0/ D 0 otherwise.)

We claim that, if � 2 Lp.Rd�1/ with 1 < p < 1 if d D 2 and d � 1 � p < 1 if
d � 3, then

G0.H0 C 1/�1=2 and G.H0 C 1/�1=2

are compact. When � is bounded and has support in a set of �nite measure, this fol-
lows from the trace version of Rellich’s compactness theorem, see, e.g., Theorem 6.3
in [2]. By the trace version of Sobolev’s embedding theorem (see, e.g., Theorem 4.12
in [2]) and an argument as in Lemma 4.3 in [10] we obtain the assertion in the general
case.

Thus, we have veri�ed the assumptions of Lemma B.1 in [10] and we infer that
the quadratic form (2), which is the same as kH 1=2

0  k2 C .G ;G0 /, is closed and
sectorial and generates an m-sectorial operator H . Moreover, let z 2 C n Œ0;1/ D
�.H0/ and de�ne the Birman–Schwinger operator

K.z/ D G0.H0 � z/�1G� in L2.Rd�1/: (8)

Strictly speaking, since in our case the operators G and G0 are not closable, the
operator K.z/ is de�ned as

K.z/ D .G0.H0 C 1/�1=2/.H0 C 1/.H0 � z/�1.G.H0 C 1/�1=2/�:

The following appears as Lemma B.1 in [10] and represents a version of the Birman–
Schwinger principle.

Lemma 3.1. Let z 2 C n Œ0;1/, then 1CK.z/ is boundedly invertible if and only
if z 2 �.H/.
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Remark 3.2. In passing we mention that Proposition B.2 in [10] yields that

Œ0;1/ D ¹z 2 CW ran.H � z/ is not closedº
[ ¹z 2 CW dim ker.H � z/ D codim ran.H � z/ D 1º

and

�.H/ n Œ0;1/ D ¹z 2 CW ran.H � z/ is closed and
0 < dim ker.H � z/ D codim ran.H � z/ < 1º:

Moreover, the latter set is at most countable and consists of eigenvalues of �nite
algebraic multiplicities which are isolated in �.H/. These facts, however, will not
be relevant for the proof of Theorems 1.1 and 1.3.

Our next goal is to �nd a convenient expression for the Birman–Schwinger op-
erator. If we denote by � the trace operator which restricts a function on Rd to
Rd�1 � ¹0º, then we have

G0 D p
� �; G D

p
j� j�:

Moreover, let us denote the Laplacian on Rd�1 by ��0.

Lemma 3.3. Let z 2 C n Œ0;1/. Then

�.�� � z/�1�� D 1

2
.��0 � z/�1=2:

Technically, one can consider � as an unbounded operator from L2.Rd / to
L2.Rd�1/ with domain H 1.Rd /. The expression �� is purely formal and should
be interpreted in the same sense as explained after (8).

Proof. Since .�� � z/�1 has integral kernel

.2�/�d
ˆ

Rd

ei� �.x�y/

�2 � z d�; x; y 2 R
d ;

the operator �.�� � z/�1�� has integral kernel

.2�/�d
ˆ

Rd�1

ˆ

R

ei�
0�.x0�y0/

.� 0/2 C �2
d

� z
d� 0d�d ; x0; y0 2 R

d�1:

The integral with respect to �d can be computed using
ˆ

R

d�d

�2
d

C b2
D �

b
if Re b > 0:
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Thus, �.�� � z/�1�� has integral kernel

1

2
.2�/�dC1

ˆ

Rd�1

ei�
0�.x0�y0/

p
.� 0/2 � z

d� 0; x0; y0 2 R
d�1;

with the branch of the square root as described before Theorem 2.1. This coincides
with the integral kernel of the operator 1=2 .��0 � z/�1=2.

Remark 3.4. One can also show that  is an eigenfunction of (1) corresponding
to an eigenvalue E if and only if  .x/ D .exp.�jxd jp��0 � E/'/.x0/, where
' D � satis�es .

p��0 � E C �=2/' D 0. This is closely related to the harmonic
extension and the Dirichlet–to–Neumann operator for the Laplacian onL2.RdC/; see
also Remark 1.5. This observation was also crucial in [14].

Combining Lemma 3.3 with Theorem 2.1 we obtain

Corollary 3.5. Let 0 <  � 1=2 if d D 2 and 0 �  � 1=2 if d � 3. Then there is a
constant C;d such that for all ˛1; ˛2 2 L2.2Cd�1/.Rd�1/,

k˛1�.�� � z/�1��˛2k � C;d jzj�=.2Cd�1/k˛1k2.2Cd�1/k˛2k2.2Cd�1/:

Moreover, if  > 1=2, then there is a constant C;d such that for all ˛1; ˛2 2
L2.2Cd�1/.Rd�1/

k˛1�.�� � z/�1��˛2k
� C;dı.z/

�.2�1/=.2.2Cd�1//jzj�1=.2.2Cd�1//k˛1k2.2Cd�1/k˛2k2.2Cd�1/:

Proof. According to Lemma 3.3,

˛1�.�� � z/�1��˛2 D 1

2
˛1.��0 � z/�1=2˛2;

and, for any 1 � p � 1,

k˛1.��0 � z/�1=2˛2k � k˛1kLp0 !L2k.��0 � z/�1=2kLp!Lp0 k˛2kL2!Lp :

By Hölder’s inequality, if 1 � p � 2,

k˛1kLp0 !L2 D k˛1k2p=.2�p/ and k˛2kL2!Lp D k˛2k2p=.2�p/:

We bound the norm of .��0 �z/�1 fromLp toLp0
by Theorem 2.1 withN D d�1.

Bound (4) holds if 1 < p � 4=3 for d D 2 and if 2.d�1/=d � p � 2d=.dC1/ if d � 3.
These conditions correspond precisely to our assumptions on  in the �rst part if we
pick p such that 2p=.2�p/ D 2.2Cd�1/. Similarly, bound (5) holds if p > 2d=.dC1/
which corresponds to  > 1=2.
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4 Proof of Theorems 1.1, 1.2, and 1.3

Let E be an eigenvalue of the operator (1). We begin with the case E 2 C n Œ0;1/,
where we use the argument of [1]; see also [9]. Then, by the Birman–Schwinger
principle (Lemma 3.1), 1CK.E/ D 1Cp

��.���E/�1��pj� j is not boundedly
invertible and therefore kK.E/k � 1. Combining this with the upper bound on
kK.E/k in the �rst part of Corollary 3.5 (with ˛1 D p

� and ˛2 D
p

j� j), we obtain
1 � C;d jEj�=.2Cd�1/k�k2Cd�1:

This is the claimed bound on jEj for 0 <  � 1=2 in Theorem 1.1 and the condition
for the absence of eigenvalues for  D 0 in Theorem 1.3. Using the second part of
Corollary 3.5 instead, we obtain the claimed bound on jEj1=2ı.E/

.2�1/=2 for  > 1=2

in Theorem 1.2.
Now let E 2 Œ0;1/ and denote by  a corresponding eigenfunction. We use an

approximation argument similar to [15]. For " > 0 let

'" WD G0.��� E � i"/�1.�� �E/ ;
which is well-de�ned since  2 H 1.Rd /. We claim that '" ! G0 weakly in
L2.Rd�1/ as " ! 0. (Note that G0 2 L2.Rd�1/ is well-de�ned since  2
H 1.Rd /.) In fact, by dominated convergence in Fourier space we conclude that for
any f 2 L2.Rd�1/, as " ! 0,

.f; '"/ D ..G0.��C 1/�1=2/�f; .�� �E � i"/�1.�� �E/.��C 1/
1=2 /

�! ..G0.��C 1/�1=2/�f; .��C 1/
1=2 / D .f; G0 /:

On the other hand, the eigenvalue equation for  gives

'" D .G0.�� �E � i"/�1G�/.G0 /;

and therefore, by Corollary 3.5,

k'"k � C;d .E
2 C "2/�=.2.2Cd�1//k�k2Cd�1kG0 k:

By weak semi-continuity of the norm we conclude that

kG0 k � lim inf
"!0

k'"k � lim inf
"!0

C;d .E
2 C "2/�=.2.2Cd�1//k�k2Cd�1kG0 k:

Since G0 6� 0 (otherwise  would be an eigenfunction of �� with eigenvalue E),
we �nally obtain again

1 � C;d jEj�=.2Cd�1/k�k2Cd�1;

as claimed.
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5 Uniform Sobolev inequalities in trace ideals

By the argument in the proof of Corollary 3.5 we see that the uniform Sobolev
inequality from Proposition 2.1 is equivalent to a bound of the operator norm of
˛1.�� � z/�s˛2 in terms of the L2p=.2�p/.RN /-norms of ˛1 and ˛2 and an inverse
power of jzj. In this section we improve this by showing that not only the operator
norm, but also a trace ideal norm can be bounded in terms of the same quantities.

Proposition 5.1. Let 0 < s � .NC1/=2 and assume that
8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

1 � q � N C 1

2s
if N < 2s;

1 < q � N C 1

2s
if N D 2s;

N

2s
� q � N C 1

2s
if N > 2s:

In addition, if N D 1 and s � 1=2 assume that q < 2 and, if N D 2 and s � 1=2

that q > 1=s. Then there is a constant CN;q;s such that for all ˛1; ˛2 2 L2q.RN / and
z 2 C n Œ0;1/,

k˛1.�� � z/�s˛2kr � CN;q;s jzj�sCN=.2q/k˛1k2qk˛2k2q
with r D 2 if N D 1 and

r D max
°.N � 1/q

N � qs ; 2
±

if N � 2:

For s D 1 and q � .NC1/=.2s/ this proposition appears in [13]. There it is also
shown that the trace ideal index r is smallest possible if N � 3 or if N D 2 and
q � 4=3. We note that the technique from [10] allows one also to obtain inequalities
for q > .NC1/=.2s/.

Proof. We distinguish the following two cases:

(A)
N � 1
2

� s � N C 1

2
, q � 2N

N � 1C 2s
, q < 2;

(B) either

(B1) s <
N � 1
2
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or

(B2)
N � 1
2

� s � N C 1

2

and

q >
2N

N � 1C 2s
:

Note that case (A) corresponds to r D 2 and case (B) to r D .N�1/q=.N�qs/.

Case (A). We know that .�� � z/�s is an integral operator with integral kernel

ˆ

RN

ei� �.x�y/

.�2 � z/s
d�

.2�/N
D 21�s

.2�/N=2�.s/

� p�z
jx � yj

�.N�2s/=2

K.N�2s/=2.
p�zjx � yj/;

where we choose the branch of the square root on Cn .�1; 0�with positive real part;
see, e.g., [16] (Section III.2.8). Bounds on Bessel functions (we give references for
more precise bounds when dealing with case (B)) show that the absolute value of this
kernel is bounded by

CN;�;s jzj.N�2s/=2.
p

jzj jx � yj/��;

where 8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

0 � � � N C 1 � 2s
2

if N=2 < s � .NC1/=2;

0 < � � N C 1 � 2s
2

if N=2 D s;

N � 2s � � � N C 1 � 2s
2

if .N�1/=2 � s < N=2:

If 0 � 2� < N we can use the Hardy–Littlewood–Sobolev inequality to bound the
Hilbert–Schmidt norm and obtain

k˛1.�� � z/�s˛2k2 � C 0
N;�;sjzj.N�2s��/=2k˛1k2N=.N��/k˛2k2N=.N��/:

Substituting q D N=.N��/, we see that the assumptions on q in case (A) correspond
to the assumptions on � and we obtain the claimed bounds.

Case (B). We use complex interpolation similarly as in the proof of Theorem 2.1.
Since multiplication by j̨=j j̨ j is a bounded operator, we may assume that j̨ � 0

for j D 1; 2. We consider the same family T�.z/ of operators as in the proof
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of Theorem 2.1. Bound (6) implies immediately that

k˛�=s
1 T�.z/˛

�=s
2 k � A if Re � D 0

with a constant A depending only on N . On the other hand, the explicit form of the
integral kernel of T� .z/ and the bounds in [18] (Proof of Theorem 2.3) – see also [4]
and [13] – show that this integral kernel satis�es

jT� .z/.x; y/j � BRe � jzj.N�1�2Re�/=4jx�yj�.NC1�2Re�/=2 if 0 < jRe ��N=2j � 1=2:

Thus, if we assume in addition that Re � > 1=2, we can bound the Hilbert–Schmidt
norm as before by the Hardy–Littlewood–Sobolev inequality and get

k˛�=s
1 T� .z/˛

�=s
2 k2

� B 0
Re � jzj.N�1�2Re�/=4k˛1kRe �=s

4N Re�=.s.N�1C2Re�//
k˛2kRe �=s

4N Re�=.s.N�1C2Re�//
:

We choose t > s with 0 < jt � N=2j � 1=2 and t > 1=2 and use complex
interpolation with the lines Re � D 0 and Re � D t to get

k˛1Ts.z/˛2k2t=s

� A
.t�s/=t.B 0

t /
s=t jzjs.N�1�2t/=.4t/k˛1k4Nt=.s.N�1C2t//k˛2k4Nt=.s.N�1C2t//:

Substituting t D .N � 1/qs=.2.N�qs//, we see that the assumptions on q in case (B),
plus the assumption q ¤ N2=.2.2N�1//, correspond to the assumptions on t .

Finally, let q D N2=..2N�1/s/. In this case we use the same family zT�.z/ of
operators as in the proof of Theorem 2.1 and note that

j zT�.z/.x; y/j � zBN=2jzj�1=4jx � yj�1=2 if Re � D N=2:

As before, we can use the Hardy–Littlewood–Sobolev inequality to bound the
Hilbert–Schmidt norm of ˛

�=s
1 T�.z/˛

�=s
2 for Re � D N=2, and then we can deduce

the claimed bound by complex interpolation. This proves the claimed bound in
case (B).

Combining this proposition with Lemma 3.3 we get

Corollary 5.2. Let 0 <  < 1=2 if d D 2, 0 <  � 1=2 if d D 3 and 0 �  � 1=2 if
d � 4. Then there is a constant C;d such that for all ˛1; ˛2 2 L2.2Cd�1/.Rd�1/,

k˛1�.�� � z/�1��˛2kr � C;d jzj�=.2Cd�1/k˛1k2.2Cd�1/k˛2k2.2Cd�1/;

where r D 2 if d D 2 and r D 2.d�2/.2Cd�1/=.d�1�2/ if d � 3.
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6 Proof of Theorem 1.4

According to Proposition 4.1 in [10] (which generalizes a result in [20]) the eigen-
values .Ej / of ��C �.x0/ı.xd / in L2.Rd / coincide with the eigenvalues .Ej / of
�nite type of the analytic family 1CK in Cn Œ0;1/, repeated according to algebraic
multiplicity. HereK denotes the Birman–Schwinger operator from (8). Corollary 5.2
combined with Theorem 3.1 in [10] (which is essentially from [13] and relies on [3])
yields

X

j

ı.zj /jzj j�1=2 .1�..2r/=.2Cd�1/�1C"/C/

� C;d;"k�k.2Cd�1/.1C..2r/=.2Cd�1/�1C"/C/=.2/

2Cd�1
for any " > 0 with r D 2 if d D 2 and r D 2.d�2/.2Cd�1/=.d�1�2/ if d � 3.
Setting � D ..2r/=.2Cd�1/ � 1C "/C, we obtain the inequality in the theorem.
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A lower bound to the spectral threshold

in curved quantum layers

Pedro Freitas and David Krejčiřík

Dedicated to Pavel Exner on the occasion of his 70th birthday

1 Introduction

In this paper we obtain a lower bound to the lowest energy of a quantum particle con-
�ned to the space delimited by two parallel surfaces. We assume that these surfaces
represent a perfect hard-wall boundary, in the sense that the particle wavefunction
vanishes there, and concentrate in the case where they are unbounded. In agreement
with the paper [6] where these structures were introduced, we shall use the term
quantum layers for such systems.

This rather simple model is known to be remarkably successful in describing vari-
ous aspects of electronic transport in quantum heterostructures (we refer to the mono-
graph [20] for the physical background). One of the main questions arising within
this scope is whether or not there are geometrically induced bound states. Indeed,
some of the most important theoretical results in the �eld are a number of theorems
guaranteeing the existence of such solutions under rather simple and general physical
conditions [6], [3], [18], [17], [19], and [21] (see also [9], [13], [12], [14], [11], [5],
[16], and [15] for other mathematical studies of quantum layers).

The main contribution of the present paper is to provide a lower bound to the
ground-state energy of the bound states. However, our results are more general in the
sense that this lower bound also applies to situations where the lowest energy in the
spectrum does not correspond to a bound state, but rather to a scattering state; this
happens, e.g., if the layer is periodically curved.

To obtain this lower bound, we follow an idea similar to that used by Pavel Exner
and the present authors in [8] to derive a lower bound to the spectral threshold in
quantum tubes, i.e. in the case of the con�guration space being a d -dimensional tube
about an in�nite curve, with d � 2. More precisely, there it was shown that the
lower bound is given by the lowest Dirichlet eigenvalue in a torus determined by the
geometry of the tube. This lower bound is optimal in the sense that it is achieved by a
tube (about a curve of constant curvature). However, the geometry of quantum layers
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is more complicated and we shall see that the optimality is one of the main features
in which the present situation differs from that of quantum tubes.

In view of the above physical model, the Hamiltonian of a quantum layer can be
identi�ed with the Dirichlet Laplacian in a tubular neighbourhood of constant radius
about a complete non-compact surface† � R3. In this paper, we proceed in a greater
generality by considering compact surfaces, too. More precisely, we assume only that

† is a connected complete orientable surface of class C 2 embedded in R
3

with bounded principal curvatures k1 and k2:
(1)

Then, given a positive number a satisfying

a max¹kk1k1; kk2k1º < 1; (2)

we introduce the tubular neighbourhood

� WD ¹x 2 R
3 j dist.x; †/ < aº (3)

and denote by ���D the Dirichlet Laplacian in L2.�/. In addition to (2), we also
assume that � “does not overlap itself” (cf. (7) below).

If † is compact, then � is bounded and a lower bound to the spectral threshold
of the Laplacian follows by means of the Faber–Krahn inequality; i.e., inf �.���D/
is bounded from below by the lowest Dirichlet eigenvalue of the ball of volume j�j
in this case. However, we are mainly interested in the unbounded case, where similar
arguments based on the Faber–Krahn inequality may, at best, just provide a trivial
bound and the location of inf �.���D/ becomes dif�cult, since we are actually deal-
ing with a class of quasi-cylindrical domains (cf. §49 of [10] or Section X.6.1 of [7]).
In this note we derive the following universal lower bound:

Theorem 1.1. Let� be as above. One has

inf �.���D/ � min¹�1.kC
1 ; k

�
2 /; �1.k

�
1 ; k

C
2 /º; (4)

where ki̇ WD ˙ sup.˙ki /, i 2 ¹1; 2º, and

�1.�1; �2/ WD inf
 2W 1;2

0
..�a;a//n¹0º

ˆ a

�a
j 0.u/j2 .1 � �1u/ .1� �2u/ du

ˆ a

�a
j .u/j2 .1� �1u/ .1 � �2u/ du

(5)

for constants �1; �2 2 Œ�1=a; 1=a�.
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In view of Theorem 1.1, the spectral threshold of the Dirichlet Laplacian in the
three-dimensional tubular manifold � can be estimated from below by means of
the one-dimensional spectral problem associated with (5). It is easy to verify that
�1.k1; k2/with constant k1 and k2 gives the spectral threshold of the Dirichlet Lapla-
cian in the layer about the plane if k1 D k2 D 0, a sphere if k1 D k2 > 0 or a cylinder
if k1 > 0 and k2 D 0. That is, Theorem 1.1 is optimal for the class of layers built
about surfaces with non-negative Gauss curvature k1k2. On the other hand, we are
not aware of a geometric meaning of (5) if the Gauss curvature k1k2 is negative and
the surface is complete. In fact, since no such surface exists which satis�es hypothe-
sis (1) and whose Gauss curvature is identically equal to a negative constant, a better
lower bound than (4) is expected to hold for layers about surfaces with sign-changing
or non-positive Gauss curvature.

In any case, while the right hand side of (4) diminishes as the Gauss curvature
of † becomes more negative, it is uniformly bounded away from zero for layers
about surfaces whose Gauss curvature is non-negative:

Proposition 1.2. Let �1; �2 2 .�1=a; 1=a/ be such that �1�2 � 0. Then

�1.�1; �2/ � j 20;1

.2a/2
;

where j0;1 � 2:40 denotes the �rst zero of the Bessel function J0.

The bound of Proposition 1.2 is reminiscent of the uniform lower bound obtained
in [8] for strips, i.e. a two-dimensional analogy of quantum layers, by applying the
Faber–Krahn inequality to a sequence of Dirichlet annuli converging to a Dirichlet
disk.

If �1�2 < 0, it actually turns out that it is impossible to obtain a lower bound to
�1.�1; �2/ for all �1; �2 2 .�1=a; 1=a/ that would not depend on �1 and �2, as the
following result shows:

Proposition 1.3. We have

�1

�
� 1

a
;
1

a

�
D 0:

The rest of this paper consists of one section where we provide the proofs of
Theorem 1.1 and Propositions 1.2 and 1.3.
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2 The proofs

The central step in the proof of Theorem 1.1 is based on an idea adopted from [8].
Roughly speaking, expressing the Laplacian ���D in the natural coordinates param-
eterising the layer (3) by means of “longitudinal” coordinates of the reference sur-
face † and a “transverse” coordinate of the normal bundle of †, we neglect the con-
tribution of the former and the latter leads to a “variable” lower bound of the type (5).
The constant lower bound given by the right hand side of (4) and the uniform lower
bound of Proposition 1.2 then follow from an analysis of the one-dimensional spectral
problem associated with (5).

We need to start with a detailed geometry of curved layers adopted from [3].
Let g be the Riemannian metric of † induced by the embedding. The orientation
of † is speci�ed by a globally de�ned unit normal vector �eld nW† ! S2. For any
point x 2 †, we introduce the Weingarten map

LxWTx† �! Tx†; � 7�! �dnx.�/:

The principal curvatures k1 and k2 at x are de�ned as eigenvalues ofLx with respect
to g.x/. Although these curvatures are a priori de�ned only locally on †, the Gauss
curvatureK WD k1k2 and the mean curvatureM WD 1=2.k1Ck2/ are globally de�ned
continuous functions on †.

Let us introduce the mapping

LW† � .�a; a/ �! R
3; .x; u/ 7�! x C n.x/u: (6)

Assuming (2) and that
L is injective; (7)

this mapping induces a diffeomorphism and the image L.† � .�a; a// coincides
with � de�ned by (3). In other words, � is a submanifold of R3 squeezed between
two parallel surfaces at the distance a from †.

Using (6), we can identify�with the Riemannian manifold†�.�a; a/ endowed
with the metric G induced by L. One has

G.x; u/ D g.x/ ı .Ix � Lxu/
2 C du2;

where Ix denotes the identity map on Tx†. By the de�nition of principal curvatures,
it is easy to see that the measure on � ' .R � .�a; a/; G/ at a point .x; u/ acquires
the form

d� D .1 � k1.x/ u/.1� k2.x/u/d†du;

where d† du stands for the product measure on † � .�a; a/ at .x; u/. Here
d† D jg.x/j1=2dx1dx2 in a local coordinate system of † at x, with the usual nota-
tion jgj WD det.g/.
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Let Gij be the coef�cients of the inverse of G in local coordinates .x; u/ for
†� .�a; a/. Using the above identi�cation, ���D is unitarily equivalent to the self-
adjoint operator H associated with the quadratic form h de�ned in the Hilbert space
H WD L2.† � .�a; a/; d�/ by

hŒ‰� WD
ˆ

†�.�a;a/
.@i‰.x; u//G

ij .x; u/ .@j‰.x; u//d�;

‰ 2 Domh WD W
1;2
0 .† � .�a; a/; d�/:

Here the Sobolev spaceW 1;2
0 .†� .�a; a/; d�/ is de�ned as the completion of func-

tions fromC1
0 .†�.�a; a//with respect to the norm .hŒ��Ck�k2

H
/

1=2. Consequently,
to prove Theorem 1.1, it is equivalent to establish the lower bound (4) for the opera-
tor H .

Proof of Theorem 1.1. Let ‰ be any function de�ned in C1
0 .† � .�a; a//, a dense

subspace of Domh. Since .G��/�;�D1;2 is positive de�nite, one has

hŒ‰� �
ˆ

†

d†
ˆ a

�a
du j@u‰.x; u/j2.1 � k1.x/ u/.1� k2.x/u/

�
ˆ

†

d†�1.k1.x/; k2.x//
ˆ a

�a
du j‰.x; u/j2.1� k1.x/u/.1� k2.x/u/;

where �1.�1; �2/ is de�ned by (5). It remains to show that

�1.k1.x/; k2.x// � min¹�1.kC
1 ; k

�
2 /; �1.k

�
1 ; k

C
2 /º (8)

for all x 2 †. Given constants �1; �2 2 .�1=a; 1=a/, the change of test function

� WD
p
.1 � �1u/.1 � �2u/ 

in (5) and an integration by parts yields

�1.�1; �2/ D inf
�2W 1;2

0
..�a;a//n¹0º

ˆ a

�a
.j�0.u/j2 C V.uI �1; �2/j�.u/j2/du

ˆ a

�a
j�.u/j2 du

; (9)

where

V.uI �1; �2/ WD �1
4

.�1 � �2/2
.1� �1u/2.1 � �2u/2 : (10)
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The constant lower bound (8) then follows by observing that

V.uI k1.x/; k2.x// � min¹V.uI kC
1 ; k

�
2 /; V .uI k�

1 ; k
C
2 /º

for any �xed u 2 .�a; a/ and all x 2 †. The last inequality can be established for
non-zero u’s by writing

V.uI �1; �2/ D � 1

4u2

� 1

1 � �1u � 1

1 � �2u
�2

(11)

and follows more easily for u D 0.

Remark 2.1. Following Remark 1 in [3], since the hypothesis (2) is still enough to
ensure that .† � .�a; a/; G/ is immersed in R3, we do not need to assume (7) in
order to get (4) for the operator H .

Let us now derive the uniform lower bound of Proposition 1.2.

Proof of Proposition 1.2. In view of (5), without loss of generality we may assume
that �1 and �2 are non-negative. By (9) with (11), we have

�1.�1; �2/ � min¹�1.�1; 0/; �1.0; �2/º:

However, �1.�; 0/ D �1.0; �/ with � 2 Œ0; 1=a/ is the spectral threshold of the
Dirichlet Laplacian in the strip of cross-section .�a; a/ built either over a circle of
curvature � if � 6D 0 or over a straight line if � D 0. With the help of the mono-
tonicity properties established in Proposition 4.2 in [8] (or using again (9) with (11)),
the Faber–Krahn inequality yields (cf. Proposition 4.5 in [8])

�1.0; �/ � �1.0; 1=a/ D j 20;1

.2a/2

for all � 2 Œ0; 1=a/. Notice that �1.0; 1=a/ is the lowest eigenvalue of the Dirichlet
Laplacian in the disk of radius 2a.

Finally, we establish Proposition 1.3.

Proof of Proposition 1.3. For any positive number " < min¹1; aº, let us set

 ".u/ WD

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

1 if juj � a � ";

�
log

�a � u
"2

�

log."/
if a � " � juj � a � "2;

0 if a � "2 � juj:
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Then  " 2 W
1;2
0 ..�a; a// and using  " as a test function in the right hand side

of (5) with �1 WD �1=a and �2 WD 1=a, we obtain

�1

�
� 1

a
;
1

a

�
� 2

ˆ a

0

j 0
".u/j2

�
1� u

a

�
du

ˆ a

0

j ".u/j2
�
1� u

a

�
du

;

where we used the bounds 1 � 1 C u=a � 2. While the denominator converges to
´ a

0
.1�u=a/du D a=2, an explicit computation shows that the numerator tends to zero

as " ! 0.

Remark 2.2. Note that (9) yields a Hardy–Poincaré-type inequality
ˆ a

�a
j�0.u/j2du � �1.�1; �2/

ˆ a

�a
j�.u/j2duC

ˆ a

�a
jV.uI �1; �2/j j�.u/j2du (12)

for all � 2 W
1;2
0 ..�a; a// and all �1; �2 2 Œ�1=a; 1=a�, where the Hardy weight

V. � I �1; �2/ is given by (10) and the Poincaré constant �1.�1; �2/ interpolates
between 0 and �2=.2a/2. An equivalent version of this inequality in weighted spaces
follows from (5). If �1D�2�0, then V. � I �1; �2/ vanishes identically and �1.�1; �2/
equals �2=.2a/2, the �rst eigenvalue of the Dirichlet Laplacian in the interval .�a; a/.
On the other hand, putting �1 D 1=a and �2 D �1=a in (12), Proposition (1.3) yields
an optimal Hardy-type inequality

ˆ a

�a
j�0.u/j2 du �

ˆ a

�a
a2

.a2 � u2/2
j�.u/j2du

for all � 2 W
1;2
0 ..�a; a//. We remark that this inequality is better than the well-

known bound (see, e.g., [1])
ˆ a

�a
j�0.u/j2 du �

ˆ a

�a
1

4 .a � juj/2 j�.u/j2du

for all � 2 W 1;2
0 ..�a; a//, which can be established by the classical Hardy inequality.

Notice that the function a�j � j has the meaning of the distance to the boundary of the
one-dimensional domain .�a; a/. Hardy inequalities with weights of type (10) have
been recently considered for higher-dimensional domains in [4] (see also Lemma 8
in [2]).
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1 Introduction

Differential operators with point interactions arise in various physical applications as
exactly solvable models that describe complicated physical phenomena (numerous
results as well as a comprehensive list of references may be found in [4] and its
appendix [17] and in [6]). An important class of such operators is formed by the
differential operators with the coef�cients having singular support on a disjoint set of
points. The most known example is the operator HX;˛;q associated with the formal
differential expression

`X;˛;q WD � d2

dx2
C q.x/C

X

xn2X
˛nı.x � xn/: (1)

This operator describes a ı-interaction on a discrete set X D ¹xnºn2I � R, and
the coef�cients ˛n are called the strengths of the interaction at the point x D xn.
Investigation of this model was originated by Kronig and Penney [30] andGrossmann
et. al. [24] (see also [20]). In particular, the “Kronig–Penney model” (`X;˛;q with
X D Z, ˛n � ˛, and q � 0) provides a simple model for a non-relativistic electron
moving in a �xed crystal lattice.

There are several ways to associate an operator with the expression `X;˛;q .
In the following we will treat Hamiltonian (1) in the framework of extension the-
ory of symmetric operators.
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The minimal symmetric operator HX;˛;q is naturally associated with (1) in
L2.RC/. Namely, de�ne the operator H 0

X;˛;q by the differential expression

`q WD � d2

dx2
C q.x/; x 2 RC D .0;1/; (2)

on the domain

dom.H 0
X;˛;q/ D

´
f 2 W 2;2

comp.RC n X/;
n 2 ZC

ˇ̌
ˇ̌
ˇ
f .0/ D 0; f .xnC/ D f .xn�/;
f 0.xnC/ � f 0.xn�/ D ˛nf .xn/

µ
: (3)

Clearly, H 0
X;˛;q is symmetric and hence admits a closure HX;˛;q . In general, the op-

erator HX;˛;q is symmetric but not automatically self-adjoint, even in the case q�0.
Note that the Hamiltonian Hq WD HXI0;q with ˛ D ¹˛nºn2N D 0 is identi�ed with
the Dirichlet realization of the expression (2) in L2.RC/. We set

d� WD inf
n
dn and d� WD sup

n
dn; dn WD xn � xn�1; x0 WD 0:

Numerous works are devoted to the spectral analysis of the operators HX;˛;q ,
cf. monographs [4] and [6] and the review papers [17], [10], [14], and [27]. Spectral
analysis of an operator means the characterization of continuous, absolute continuous
and singular spectrum. In the following we are interested in the spectral analysis of
Hamiltonians of type Hq D HX;˛;q for the vector-valued case. For the scalar case
there are only a few results in this direction known in the literature. Let us recall
them.

Theorem 1.1 ([5] and [26]). Let q.�/ D q.�/ 2 L1.RC/ and let d� < 1. Then
�ac.HX;˛;q/ D �ac.Hq/ provided that

1X

nD1

j˛nj
dnC1

< 1: (4)

If in addition, q 2 L1.RC/, then �ac.HX;˛;q/ D Œ0;1/.

For d� > 0 the result was established earlier by Mikhaı̆lets [35]. In this case
condition (4) turns into

P1
nD1 j˛nj < 1: The proof in [5] is based on the boundary

triplet approach to the extensions. Namely, it was shown that the resolvent difference
.HX;˛;q � i/�1 � .HX;0;q � i/�1 is a trace class operator. Then the result is implied
by the Birman– Kreı̆n theorem generalizing the classical Kato–Rosenblum result
(see Theorem 16.1 in [7] and Section 99 of [3]).
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However Theorem 1.1 does not ensure absence of a singular part �s.HX;˛;q/ of
the spectrum �.HX;˛;q/. It is well known that this problem requires a special analysis
which cannot be extracted from the Kato–Rosenblum theorem. Moreover, to the best
of our knowledge the pure absolute continuity of HX;˛;q was established only in a
few cases, for instance by Shubin Christ and Stolz [37].

Theorem 1.2 ([37]). Let X D Z, i.e., X D ¹nºn2Z. Then the following holds:

(i) if q.x/ D 0 and either
P0
nD�1 j˛nj < 1 or

P1
nD1 j˛nj < 1, then the positive

part EHZ;˛;0
.RC/HZ;˛;0 of HZ;˛;0 is purely absolutely continuous, i.e.,

�.HZ;˛;0/ \ Œ0;C1/ D �ac.HZ;˛;0/ D Œ0;C1/

and

�s.HZ;˛;0/ \ RC D ;;

(ii) if q.x/ D x and
P�1
nD�1 j˛nj=pjnj < 1, then

�.HZ;˛;x/ D �ac.HZ;˛;x/ D R and �s.HZ;˛;x/ D ;:

To prove this result the authors generalized the method of subordinacy originated
and developed by D. Gilbert and D. Pearson [21] and [22] (see also [38]).

The main object of our paper is the vector-valued Sturm–Liouville differential
expression with a summable matrix potential Q.�/ D Q�.�/ 2 L1.RC;Cm�m/ and
a �nite number of point interactions

LX;˛;Q WD � d2

dx2
CQ.x/C

X

xn2X
˛nı.x � xn/; x 2 RC D .0;1/: (5)

Here X D ¹xnºpnD1 � RC is a �nite strictly increasing sequence, xnC1 > xn,
n 2 ¹1; : : : ; pº, p < 1, and ˛ D ¹˛nºp1 � Cm�m, ˛n D ˛�

n .
TheHamiltonianHX;˛;Q associated inL2.RC;Cm/with the formal expression (5)

is given by formula (3) with q replaced by Q and ˛ D ¹˛nºp1 being a sequence of
self-adjoint m �mmatrices. Note that the HamiltonianHX;0;Q with ˛n D 0, n 2 N,
is identi�ed with the Dirichlet realization HQ of the expression

LQ WD � d2

dx2
CQ.x/; x 2 RC;

considered inL2.RC;Cm/. The main result of the paper consists in a complete spec-
tral analysis of the Hamiltonian HX;˛;Q and reads as follows.
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Theorem 1.3. Let Q D Q� 2 L1.RC;Cm�m/ and let HX;˛;Q be the Hamilto-
nian associated with (5). Then the positive part EHX;˛;Q

.RC/HX;˛;Q of HX;˛;Q is

unitarily equivalent to the positive part EHQ
.RC/HQ of the Dirichlet realization

HQ D HX;0;Q. In particular, the spectrum of EHX;˛;Q
.RC/HX;˛;Q is purely abso-

lutely continuous and of constant spectral multiplicity m.
Moreover, the Hamiltonian HX;˛;Q is semibounded below and its negative spec-

trum is either �nite or forms a sequence tending to zero.

This result seems to be new even in the scalar case .m D 1/ and supplements
Theorems 1.1 and Theorem 1.2(i) in the case of �nitely many point interactions.

At �rst we establish this result for the Sturm–Liouville operatorHQ without point
interactions, i.e., assuming that ˛n D 0 for n 2 ¹1; : : : ; pº in (5) (see Theorem 3.8).
In this case Theorem 1.3 ensures the absolute continuity of the positive part of the
Dirichlet realization HQ WD HX;0;Q and discreteness of its negative part. Moreover,
we show that similar statements are valid for any realization of the expression HQ
in L2.RC;Cm/ (see Corollary 3.9).

The paper is organized as follows. In Section 2 we present necessary informa-
tion on boundary triplets and the corresponding Weyl functions. We also present
necessary facts from [9], [32], and [33] on description of absolutely continuous and
singular spectra of extensions by means of the limit behavior of the Weyl function
near the real axis.

In Section 3 we prove Theorem 3.8 and Corollary 3.9. This result generalizes the
classical Titchmarsh’s result (see Chapter 5 in [39]) to the case of Sturm–Liouville
operator with a matrix-valued summable potential and coincides with it in the scalar
case (m D 1). Emphasize that the main ingredient of these results is the abso-
lute continuity of the positive part of any realization of LQ D �d2=dx2 C Q.x/

(any extension of the minimal operator associated with the expression LQ/.
In Section 4 we prove Theorem 1.3 for the Hamiltonian HX;˛;Q. Our proof sub-

stantially relies on two main ingredients:

(i) the form of the Weyl function and its limit values at the real axis obtained in the
proof of Theorem 3.8(i);

(ii) on the Weyl function technique elaborated in [9], [32], and [33] and presented
in Section 2.

Besides using theWeyl function technique we show that any self-adjoint extension
zH of the minimal operatorHmin

X;˛;Q associated with expression (5) (see de�nition (63))

has no singular continuous spectrum, �sc. zH/ D ;. Notice that statements of such
type and even stronger ones like

�sc. zH/ \ RC D �p. zH/ \ RC D ; (6)
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for any self-adjoint extension zH of a certain minimal symmetric differential operators
with in�nite de�ciency indices has already been discovered earlier. For instance, the
property (6), i.e., the fact that the positive part remains purely absolutely continuous
for any extension, was discovered for Sturm–Liouville operators �d2=dx2 C T with
bounded or unbounded operator potentials T (see [33]) as well as for Schrödinger
operators in R3 with in�nitely many point interactions X D ¹xnº, which form a
sparse sequence [34].

However as distinct from (6) there exist extensions zH ofHmin
X;˛;Q having positive

eigenvalues embedded in �ac. zH/ D Œ0;1/ (see Remark 4.7).
In connection with our investigation wemention the papers [18] and [19] by Exner

and Fraas devoted to investigation of the ac-spectrum of Schrödinger operators in
L2.Rn/, n � 2, with a singular interaction supported by an in�nite family of con-
centric shells,

HR;˛ D ��C
1X

kD1
˛kı.jxj � rk/; ˛ D ¹˛kº1

kD1 � R:

Motivated by the paper of Hempel, Hinz, and Kalf [25], Exner and Fraas in [18]
and [19] obtained a complete characterization of the spectrum of the Hamiltonian
HR;˛ with radially periodic interactions: ˛k � ˛ and rk D r0 C T k.

It is our pleasure to dedicate the paper to our friend Pavel Exner on the occasion
of his 70th birthday. He realizes very early the importance of point interactions in
quantum mechanics and has contributed a lot to the spectral theory of Schrödinger
operators with such interactions.

2 Preliminaries

2.1 Boundary triplets and Weyl functions

Let us recall some basic facts of the theory of abstract boundary triplets and the cor-
responding Weyl functions, cf. [15], [16], and [23].

The set zC.H/ of closed linear relations in H is the set of closed linear subspaces
ofH˚H. Recall that dom.‚/ D ¹f j ¹f; f 0º 2 ‚º, ran.‚/ D ¹f 0 j ¹f; f 0º 2 ‚º,
and mul.‚/ D ¹f 0 j ¹0; f 0º 2 ‚º are the domain, the range, and the multival-
ued part of ‚. A closed linear operator A in H is identi�ed with its graph gr.A/,
so that the set C.H/ of closed linear operators in H is viewed as a subset of zC.H/.
In particular, a linear relation ‚ is an operator if and only if mul.‚/ is trivial.
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We recall that the adjoint relation ‚� 2 zC.H/ of ‚ 2 zC.H/ is de�ned by

‚� D
²�
h

h0
� ˇ̌
ˇ̌ .f 0; h/H D .f; h0/H for all

�
f

f 0
�

2 ‚
³
:

A linear relation ‚ is said to be symmetric if ‚ � ‚� and self-adjoint if ‚ D ‚�.
For a symmetric linear relation ‚ � ‚� inH the multivalued part mul.‚/ is the

orthogonal complement of dom.‚/ inH. Therefore setting

Hop WD dom.‚/

and H1 D mul.‚/, one arrives at the orthogonal decomposition ‚ D ‚op ˚ ‚1
where ‚op is a symmetric operator in Hop, the operator part of ‚; and ‚1 D®�

0
f 0
� ˇ̌
f 0 2 mul.‚/

¯
, a “pure” linear relation inH1.

LetA be a densely de�ned closed symmetric operator in a separable Hilbert space
Hwith equal de�ciency indices n˙.A/ D dim.N˙i/ � 1;whereNz WD ker.A��z/
is the defect subspace.

De�nition 2.1 ([23]). A triplet … D ¹H; �0; �1º is called a boundary triplet for the
adjoint operatorA� ifH is an auxiliary Hilbert space and �0; �1W dom.A�/ ! H are
linear mappings such that the abstract Green identity

.A�f; g/H � .f; A�g/H D .�1f; �0g/H � .�0f; �1g/H; f; g 2 dom.A�/;

holds and the mapping

� WD
�
�0
�1

�
W dom.A�/ �! H ˚ H

is surjective.

First, note that a boundary triplet for A� exists whenever the de�ciency indices
of A are equal, nC.A/ D n�.A/. Moreover, n˙.A/ D dim.H/ and

ker.�/ D ker.�0/ \ ker.�1/ D dom.A/:

Note also that � is a bounded mapping from HC D dom.A�/ equipped with the
graph norm toH ˚ H:

A boundary triplet for A� is not unique. Moreover, for any self-adjoint extension
zA WD zA� of A there exists a boundary triplet … D ¹H; �0; �1º such that ker.�0/ D
dom. zA/.
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De�nition 2.2. (i) A closed extension A0 of A is called a proper extension if

A � A0 � A�:

The set of all proper extensions ofA completed by the (non-proper) extensionsA and
A� is denoted by ExtA.

(ii) Two proper extensions A0; A00; of A are called disjoint if

dom.A0/ \ dom.A00/ D dom.A/

and transversal if in addition

dom.A0/C dom.A00/ D dom.A�/:

Any self-adjoint extension zA of A is proper, i.e., zA 2 ExtA. By �xing a boundary
triplet … one can parametrize the set ExtA in the following way.

Proposition 2.3 ([16]). Let A be as above and let … D ¹H; �0; �1º be a boundary
triplet for A�. Then the mapping

ExtA 3 zA �! � dom. zA/ D ¹¹�0f; �1f º j f 2 dom. zA/º DW ‚ 2 zC.H/ (7)

establishes a bijective correspondence between the sets ExtA and zC.H/. We put
A‚ WD zA where ‚ is de�ned by (7), i.e.,

A‚ WD A� � ��1‚ D A� � ¹f 2 dom.A�/ j ¹�0f; �1f º 2 ‚º:

(i) A‚ is symmetric if and only if ‚ is symmetric, i.e., ‚ � ‚�. In particular,
A‚ is self-adjoint if and only if ‚ is self-adjoint, i.e., ‚ D ‚�. Moreover,
n˙.A‚/ D n˙.‚/.

(ii) The extensions A‚ and A0 are disjoint (transversal) if and only if ‚ is an op-
erator. In this case A‚ is given by

A‚ D A� � ker.�1 �‚�0/: (8)

Moreover, the extensions A‚ and A0 are transversal if and only if ‚ 2 B.H/.

The linear relation ‚ (the operator B) in the correspondence (7) (resp. (8)) is
called the boundary relation (the boundary operator). We emphasize that for differ-
ential operators in contrast to the von Neumann extension theory the parametriza-
tion (7)–(8) describes the set of proper extensions directly in terms of boundary con-
ditions.
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It follows immediately from Proposition 2.3 that the extensions

A0 WD A� � ker.�0/ and A1 WD A� � ker.�1/

are self-adjoint. Clearly,Aj D A‚j
; j 2 ¹0; 1º;where the subspaces‚0 WD ¹0º�H

and ‚1 WD H � ¹0º are self-adjoint relations in H. Note that ‚0 is a “pure” linear
relation.

In [15] and [16] the concept of the classical Weyl–Titchmarsh m-function from
the theory of Sturm–Liouville operators was generalized to the case of symmetric
operators with equal de�ciency indices. The role of abstract Weyl functions in the
extension theory is similar to that of the classical Weyl–Titchmarshm-function in the
spectral theory of singular Sturm–Liouville operators.

De�nition 2.4 ([15]). Let A be a densely de�ned closed symmetric operator in H

with equal de�ciency indices and let… D ¹H; �0; �1º be a boundary triplet for A�.
The operator valued functions .�/W �.A0/ ! B.H;H/ and M.�/W �.A0/ ! B.H/

de�ned by

.z/ WD .�0� Nz/
�1 and M.z/ WD �1.z/; z 2 �.A0/; (9)

are called the  -�eld and theWeyl function, respectively, corresponding to the bound-
ary triplet …:

The  -�eld .�/ and the Weyl function M.�/ in (9) are well de�ned. Moreover,
both .�/ and M.�/ are holomorphic on �.A0/ and the following relations hold
(see [15])

.z/ D .I C .z � �/.A0 � z/�1/.�/ z; � 2 �.A0/; (10)

M.z/ �M.�/� D .z � N�/.�/�.z/; z; � 2 �.A0/: (11)

Identities (10) and (11) mean that .�/ andM.�/ are the  -�eld and theQ-function of
the operatorA0; respectively, in the sense ofM. Kreı̆n (see [28]). It follows from (11)
thatM.�/ is an RŒH�-function (or Nevanlinna function), i.e., M.�/ is an (B.H/-val-
ued) holomorphic function on C n R satisfying

Im z � ImM.z/ � 0; M.z/� D M. Nz/; z 2 C n R:

Moreover, due to (11),M.�/ 2 RuŒH�, i.e., it satis�es 0 2 �.ImM.i//:
It is well known thatM.�/ admits an integral representation (see, for instance, [2]

and [3])

M.z/ D C0 C
ˆ

R

� 1

t � z � t

1C t2

�
d†M .t /; z 2 �.A0/; (12)
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where †M .�/ is an operator-valued Borel measure on R satisfying the conditions
´

R
1=.1Ct2/d†M .t / 2 B.H/ and C0 D C �

0 2 B.H/. The integral in (12) is under-
stood in the strong sense. Note that a linear term C1z is missing in (12) since A is
densely de�ned (see [15]).

Proposition 2.5. Let … D ¹H; �0; �1º and z… D ¹H; z�0; z�1º be two boundary
triplets for the operator A�; letM.�/ and �M.�/ be the corresponding Weyl functions,
and let zA0 WD A� � ker.z�0/ and

J WD i

�
0 �IH
IH 0

�
:

Then the following holds:

(i) there is JH-unitary operator X D .Xij /
2
i;jD1 2 B.H ˚ H/, i.e., X�JX D J ,

such that �
X11 X12
X21 X22

��
�1
�0

�
D
�z�1

z�0

�
I (13)

(ii) 0 2 �.X21M.z/CX22/ for z 2 �. zA0/. The Weyl functions �M.�/ andM.�/ are
related by means of the linear fractional transformation

�M.z/ D X.M.z// WD .X11M.z/CX12/.X21M.z/CX22/
�1; z 2 �. zA0/:

Recall that a symmetric operator A in H is said to be simple if there is no non-
trivial subspace which reduces it to a self-adjoint operator. In other words,A is simple
if it does not admit an (orthogonal) decomposition A D A0 ˚ S where A0 is a sym-
metric operator and S is a self-adjoint operator acting on a nontrivial Hilbert space.
It is easily seen (and well-known) thatA is simple if and only if the closed linear span
of ¹Nz.A/ j z 2 C n Rº coincides with H.

If A is simple, then the Weyl function M.�/ determines the boundary triplet …
uniquely up to unitary equivalence (see [15]). In particular, M.�/ contains the full
information about the spectral properties of A0. Moreover, the spectrum of a proper
(not necessarily self-adjoint) extension A‚ 2 ExtA can be described by means of
M.�/ and the boundary relation ‚.

Proposition 2.6 (Theorem 2.2 in [15]). Let… D ¹H; �0; �1º be a boundary triplet
forA� and letM.�/ and .�/ be the correspondingWeyl function and the  -�eld. Then
for any zA D A‚ 2 ExtA with �.A‚/ 6D ; the following Kreı̆n type formula holds:
.A‚�z/�1� .A0�z/�1 D .z/.‚�M.z//�1�. Nz/; z 2 �.A0/\�.A‚/: (14)
Moreover, if A is simple, then for any z 2 �.A0/

z 2 �j .A‚/ () 0 2 �j .‚ �M.z//; j 2 ¹pp, cº:
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Formula (14) is a generalization of the known Kreı̆n formula for canonical
resolvents (cf. [3] and [28]). It establishes a one–to–one correspondence between
the set of proper extensions zA D A‚ with non-empty resolvent set and the set of lin-
ear relations‚ inH. Note also that all quantities which enter into (14) are expressed
in terms of the boundary triplet … (see formulas (8) and (9)) (cf. [15] and [16]).

2.2 Weyl function and spectrum

In the following we are going to characterize the spectrum of the extension A0 in
terms for the Weyl function. To this end let ˆ.�/ be a scalar Nevanlinna function.
Letˆ.z/ a holomorphic function in CC. In the following by limz!�x ˆ.z/ we mean
that the limit limr#0ˆ.x C rei�/, x 2 R, exist uniformly in � 2 Œ"; � � "� for each
" 2 .0; �=2/. Let us introduce the sets
�s.ˆ/ WD ¹x 2 R j jˆ.z/j ! C1 as z !� xº;
�pp.ˆ/ WD ¹x 2 R j lim

z!�x.z � x/ˆ.z/ 6D 0º;
�sc.ˆ/ WD ¹x 2 R j jˆ.z/j ! C1 and .z � x/ˆ.z/ ! 0 as z !� xº
�ac.ˆ/ WD ¹x 2 R j 0 < Imˆ.x C i0/ < C1º; ˆ.x C i0/ D lim

y#0
ˆ.x C iy/:

Any scalar R-function ˆ.�/ admits the representation

ˆ.z/ D C0 C C1z C
ˆ

R

� 1

t � z � t

1C t2

�
d�.t/; z 2 CC; (15)

where C0; C1 2 R, C1 � 0 and the Borel measure �.�/ obeys
ˆ

R

d�.t/

1C t2
< 1:

The sets �s.ˆ/, �pp.ˆ/, �sc.ˆ/ and �ac.ˆ/ are mutually disjoint and, moreover,
are singular, pure point, singular continuous and absolutely continuous supports of
�.�/, i.e.,

�.X \�� .ˆ// D �� .X/; � D s, pp, sc, ac,

for any Borel set X � R. Let X � R be a Borel set. The set

clac.X/ D ¹x 2 R j mes..x � �; x C �/ \ X/ > 0 for all � > 0º
is called the absolutely continuous closure of the set X. Obviously, the set clac.X/
is always closed and one has clac.X/ � xX. For the Borel measure � we consider
the Lebesgue–Jordan decomposition � D �s C �ac, where �s and �ac are the cor-
responding singular and absolutely continuous measures, respectively. The supports
of the measures �s and �ac are denoted by Ss.�/ and Sac.�/, respectively.
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Lemma 2.7 (Lemma 4.1 in [9]). Let ˆ.�/ be a scalar R-function which has the rep-
resentation (15). Then Sac.�/ D clac.�ac.ˆ//.

Let … D ¹H; �0; �1º be a boundary triple of A� with Weyl function M.�/. We
set

Mh.z/ WD .M.z/h; h/; z 2 C˙; h 2 H; h 6D 0:

Further, let T D ¹hkºN
kD1, 1 � N � 1, be a total set in H. We set

�s.M IT/ WD SN
kD1�s.Mhk

/;

�pp.M IT/ WD SN
kD1�pp.Mhk

/;

�sc.M IT/ WD SN
kD1�s.Mhk

/ n�pp.M IT/;
�ac.M IT/ WD SN

kD1�ac.Mhk
/ n�s.M IT/:

Obviously, the sets �s.M IT/ and �ac.M IT/ as well as the sets �pp.M IT/,
�sc.M IT/ and �ac.M IT/ are mutually disjoint. We note that the sets �� .M IT/,
� Ds, pp, sc, have Lebesgue measure zero, i.e., mes.�� .M IT// D 0, � Ds, pp, sc.

Theorem 2.8 (Theorem 3.8 in [9]). Let A be a simple densely de�ned closed sym-
metric operator on a separable Hilbert space H with nC.A/ D n�.A/. Further, let
… D ¹H; �0; �1º be a boundary triplet ofA� with Weyl functionM.�/ and letEA0

.�/
be the spectral measure of the self-adjoint extension A0 of A.

If T D ¹hkºN
kD1, 1 � N � C1, is a total set in H, then the sets �s.M IT/,

�pp.M IT/,�sc.M IT/ and�ac.M IT/ are singular, pure point, singular continuous
and absolutely continuous supports of EA0

.�/, respectively, i.e, we have

EA0
.X \�� .M IT// D E�A0

.X/; � D s, pp, sc, ac,

for each Borel set X � R. In particular, it holds �pp.A0/ D �pp.M IT/ and
�� .A0/ � �� .M IT/ � �.A0/ for � Ds, sc, ac.

Proposition 2.9 (Proposition 4.2 in [9]). Let A be a simple densely de�ned closed
symmetric operator on a separable Hilbert space H with nC.A/ D n�.A/. Further,
let… D ¹H; �0; �1º be a boundary triplet of A� with Weyl functionM.�/.

If T D ¹hkºN
kD1, 1 � N � C1, is a total set inH, then the absolutely continuous

spectrum of the self-adjoint extension A0 WD A� � ker.�0/ of A is given by

�ac.A0/ D SN
kD1 clac.�ac.Mhk

//:
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Theorem 2.10 (Theorem 4.3 in [9]). Let A be a simple densely de�ned closed sym-
metric operator on a separable Hilbert space H with nC.A/ D n�.A/. Further, let
… D ¹H; �0; �1º be a boundary triple of A� with Weyl functionM.�/.

If T D ¹hkºN
kD1, 1 � N � C1, is a total set in H, then for the self-adjoint

extension A0 of A the following conclusions hold.

(i) The self-adjoint extension A0 of A has no point spectrum within the interval
.a; b/, i.e., �pp.A0/ \ .a; b/ D ;, if and only if for each k D 1; 2; : : : ; N one
has

lim
y#0

yMhk
.x C iy/ D 0

for all x 2 .a; b/. In this case the following relation holds
�.A0/ \ .a; b/ D �c.A0/ \ .a; b/ D

�SN
kD1�sc.Mhk

/ [SN
kD1�ac.Mhk

/
� \ .a; b/:

(ii) The self-adjoint extension A0 of A has no singular continuous spectrum within
the interval .a; b/, i.e., �sc.A0/\.a; b/ D ;, if for each k D 1; 2; : : : ; N the set
�sc.Mhk

/\.a; b/ is countable, in particular, if .a; b/n�ac.Mhk
/ is countable.

(iii) The self-adjoint extensionA0 ofA has no absolutely continuous spectrumwithin
the interval .a; b/, i.e., �ac.A0/ \ .a; b/ D ;, if and only if for each k D
1; 2; : : : ; N the condition

Im.Mhk
.x C i0// D 0

holds for a.e. x 2 .a; b/. In his case we have
�.A0/ \ .a; b/ D �s.A0/ \ .a; b/ D �s.M IT/\ .a; b/:

2.3 Weyl function and spectral multiplicity

Let E.�/ be an orthogonal operator-valued measure de�ned on the Borel sets B.R/
of R. With the measure E.�/ one associates a multiplicity function NE .�/ which is
de�ned on R, Borel measurable and takes values N0 D ¹0; 1; : : :º, cf. Section 7.4
of [8]. Themultiplicity function is important since together with the spectral type ŒE�,
cf. Section 7.3 of [8]. it characterizes the measure E.�/ up to unitary equivalence.
EverymeasureE.�/ admits a unique orthogonal decompositionE.�/ D Es.�/˚Eac.�/
into a singular orthogonal operator measure Es.�/ and an absolutely continuous or-
thogonal operator measureEac.�/. An orthogonal operator measureE.�/ is called sin-
gular if there is a Borel set ı0 of Lebesgue measure zero such that E.ı/ D E.ı\ ı0/
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for any Borel set ı. A measure E.�/ is absolutely continuous if for any Borel set ı of
Lebesgue measure zero one hasE.ı/ D 0. Obviously, the measures Es.�/ andEac.�/
admit also multiplicity functions which are denoted byNE s.�/ andNE ac.�/. For a self-
adjoint operatorH we de�ne the multiplicity functionNH .�/ byNH .�/ WD NEH

.�/,
� 2 R, where EH .�/ is the orthogonal spectral measure which corresponds to the
self-adjoint operator H . The unique decomposition EH .�/ D Es

H .�/˚Eac
H .�/ yields

a decomposition ofH into a singular partH s and an absolutely continuous partH ac

such that H D H s ˚H ac. We set

NH s.�/ WD NE s
H
.�/ and NH ac.�/ WD NE ac.�/; � 2 R:

Obviously we have NH s.�/ D NEH s .�/ and NH ac.�/ D NEHac .�/ for � 2 R.
In the following we are interested in the multiplicity function NAac

0
.�/ of the self-

adjoint extension A0 WD A� ker.�0/. It turns out that NAac
0
.�/ can be computed by

using the Weyl function as follows: choosingD 2 S2.H/ such that

ker.D/ D ker.D�/ D ¹0º

we introduce the sandwiched Weyl functionMD.�/,

.MD/.z/ WD D�M.z/D; z 2 CC:

It turns out that the limit

.MD/.t / WD s- lim
y!C0M

D.t C iy/

exists for a.e. t 2 R. We set

dMD .t / WD dim.ran.Im.MD.t ////;

which is well-de�ned for a.e. t 2 R.

Proposition 2.11 (Proposition 3.2 in [32]). Let A be be a simple densely de�ned
closed symmetric operator, let… D ¹H; �0; �1º be a boundary triplet for A� and let
M.�/ be the corresponding Weyl function. Further, letEA0

.�/ be the spectral measure
of A0 D A� � ker.�0/. If D 2 S2.H/ and satis�es ker.D/ D ker.D�/ D ¹0º,
then NAac

0
.t / D dMD .t / for a.e. t 2 R and �ac.A0/ D clac.supp.dMD// where

supp.dMD/ WD ¹� 2 R j dMD.�/ > 0º.
If, in addition, the limit M.t/ WD s-limy!C0M.t C iy/ exists for a.e. t 2 R,

then NAac
0
.t / D dM .t / for a.e. t 2 R and �ac.A0/ D clac.supp.dM //.
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3 Weyl function for matrix Sturm–Liouville operator

with integrable potential matrix

Throughout this section we assume that Q.�/ D Q.�/� 2 L1.RC;Cm�m/, RC D
.0;1/. Note that self-adjointness of a potential matrix Q.�/ means that Q.x/ D
Q.x/� for a.e. x 2 RC. Let us consider the Sturm–Liouville differential expression

LQ.f .x// WD �d
2f .x/

dx2
CQ.x/f .x/; f D .f1; : : : ; fm/

T ; x 2 RC:

In this section we investigate the structure of the Weyl function of the Dirichlet
realization HQ of LQ as well as its limit representation. In particular, we show that
the positive part of each realization zHQ of LQ is purely absolutely continuous. This
fact is well known in the scalar case (see Chapter 5.3 in [39]). Moreover, it is known
in the matrix case whenever jQj has a �nite �rst moment (see Chapter 4.1 in [1]). In
the latter case each realization of LQ including the Dirichlet realization HQ has at
most �nitely many negative eigenvalues.

Note also that several papers are devoted to the spectral theory of vector-valued
Sturm–Liouville operators. For instance, the high-energy asymptotics for Weyl–
Titchmarsh matrices associated with general matrix-valued Schrödinger operators on
a half-line was obtained in [12]. Several papers are also devoted to inverse problems.
For instance, an extension of Borg’s classical result from the class of periodic scalar
potentials to the class of re�ectionless matrix-valued potentials was obtained in [13]
(see also references in [13]).

3.1 Asymptotic representations of solutions and special identities

We are interested in matrix-valued solutions Y.x; z/ of the equation

LQ.Y.x; z// D zY.x; z/; x 2 RC; z 2 C: (16)

LetC.x; z/ and S.x; z/ be the matrix-valued solutions of the equation (16) satisfying
the initial conditions

C.0; z/ D S 0.0; z/ D Im z 2 C;

S.0; z/ D C 0.0; z/ D Om; z 2 C:
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Lemma 3.1. LetQ.�/ 2 L1.RC;Cm�m/ such thatQ.x/ D Q.x/� for a.e. x 2 RC.
For any z D � 2 RC the solutions S.x; �/ and C.x; �/ admit the representation

S.x; �/ D a1.�/ cos.x
p
�/C a2.�/

sin.x
p
�/p

�
C 1p

�
om.1/ as x ! 1; (17)

C.x; �/ D b1.�/ cos.x
p
�/C b2.�/

sin.x
p
�/p

�
C 1p

�
om.1/ as x ! 1; (18)

where

a1.�/ D � 1p
�

ˆ 1

0

sin.t
p
�/Q.t/S.t; �/dt; (19a)

a2.�/ D Im C
ˆ 1

0

cos.t
p
�/Q.t/S.t; �/dt; (19b)

and

b1.�/ D Im � 1p
�

ˆ 1

0

sin.t
p
�/Q.t/C.t; �/dt; (20a)

b2.�/ D
ˆ 1

0

cos.t
p
�/Q.t/C.t; �/dt; (20b)

and om.1/ denotes an m �m matrix with entries o.1/.

Proof. LetbC be the complex plane with a cut along Œ0;1/. For any z 2 bC0 WD bCn¹0º
the solution S.x; z/ of equation (16) satis�es the integral equation

S.x; z/ D sin.x
p
z/p

z
Im C 1p

z

ˆ x

0

sin¹.x � t /
p
zºQ.t/S.t; z/dt; z 2 bC0: (21)

Let
p
z D �C iˇ and ˇ � 0 and let S1.x; z/ WD e�ˇxS.x; z/: Inserting this expres-

sion in (21) it yields

S1.x; z/ D e�ˇx sin.x
p
z/p

z
Im C 1p

z

ˆ x

0

e�ˇ.x�t/ sin¹.x � t /pzºQ.t/S1.t; z/dt:

Since j cos xp
zj � eˇx and j sin xp

zj � eˇx , one has

jS1.x; z/j � 1

jpzj C 1

jpzj
ˆ x

0

jQ.t/j � jS1.t; z/jdt; z 2 bC0; x 2 RC;

where jS1.t; z/j D jS1.t; z/jm denotes matrix m �m norm. Therefore by the Gron-
wall lemma one gets

jS1.x; z/j � 1

jpzj exp
²

1

jpzj
ˆ x

0

jQ.t/jdt
³
; z 2 bC0; x 2 RC: (22)
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Since Q 2 L1.RC;Cm�m/ the matrix-function S1.x; z/ is bounded for all x 2 RC
and z 2 bC0.

Further let � 2 RC. Then the matrix-function S.x; �/ is bounded. Thus we
obtain from (21) that

S.x; �/ D sin.x
p
�/p

�
Im C 1p

�

ˆ 1

0

sin¹.x � t /
p
�ºQ.t/S.t; �/dt

COm

�
1p
�

ˆ 1

x

jQ.t/j dt
�

D a1.�/ cos x.
p
�/C a2.�/

sin.x
p
�/p

�
C om.1/p

�
; � 2 RC;

as x ! 1, where Om.˛/ is anm�m matrix with entries O.˛/; and a1.�/ and a2.�/
are given by (19). Since the integrals converge uniformly in � � " > 0 the matrix
functions a1.�/ and a2.�/ are continuous in � 2 RC:

To prove (18) we note that the solution C.�; z/ of equation (16) satis�es the inte-
gral equation

C.x; z/ D cos.x
p
z/Im C 1p

z

ˆ x

0

sin¹.x � t /pzºQ.t/C.t; z/dt; z 2 bC0: (23)

Setting C1.x; z/ WD e�ˇxC.x; z/; inserting this expression in (23) and applying the
Gronwall lemma yields

jC1.x; z/j � 1

jpzj exp
²

1

jpzj
ˆ x

0

jQ.t/jdt
³
; z 2 bC0; x 2 RC: (24)

Inserting this inequality in (23) implies (18).

Lemma 3.2. Let Q.�/ D Q.�/� 2 L1.RC;Cm�m/. Let aj .�/; bj .�/; j 2 ¹1; 2º, be
the matrix functions given by (19) and (20). Then the following relations hold:

a1.�/b1.�/
� D b1.�/a1.�/

�; � 2 RC; (25)

a2.�/b2.�/
� D b2.�/a2.�/

�; � 2 RC; (26)

a2.�/b1.�/
� � b2.�/a1.�/

� D b1.�/a2.�/
� � a1.�/b2.�/�; � 2 RC: (27)
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Proof. Differentiating (21) with respect to x one gets

S 0.x; z/ D cos.x
p
z/Im C

ˆ x

0

cos¹.x � t /pzºQ.t/S.t; z/dt; z 2 bC n ¹0º:

Following arguments of Lemma 3.1 we obtain

S 0.x; �/ D �a1.�/
p
� sin.x

p
�/C a2.�/ cos.x

p
�/C om.1/; x ! 1; (28)

� 2 RC. Similarly one gets

C 0.x; �/ D �b1.�/
p
z sin.x

p
�/C b2.�/ cos.x

p
�/C om.1/; x ! 1; (29)

� 2 RC. Further, let us introduce the fundamental matrix solution W.x; z/ of equa-
tion (16) and the fundamental symmetry J by setting

W.x; z/ WD
�
C.x; z/ S.x; z/

C 0.x; z/ S 0.x; z/

�
and J WD

�
0 Im

�Im 0

�
:

It is well known that the following relations hold

W.z/JW. Nz/� D W. Nz/�JW.z/ D J; z 2 bC n ¹0º; (30)

cf. [31]. The �rst of these matrix identities splits into three “scalar” identities

C.x; z/S.x; Nz/� D S.x; z/C.x; Nz/�; (31)

C 0.x; z/S 0.x; Nz/� D S 0.x; z/C 0.x; Nz/�;

and
Im D C.x; z/S 0.x; Nz/� � S.x; z/C 0.x; Nz/�: (32)

Let z D � 2 RC: Inserting expressions (17) and (18) for S.x; z/ and C.x; z/
into (31) we derive

�
b1.�/ cos.x

p
�/C b2.�/

sin.x
p
�/p

�
C om.1/p

�

�

�
a1.�/

� cos.x
p
�/C a2.�/

� sin.x
p
�/p

�
C om.1/p

�

�

D
�
a1.�/ cos.x

p
�/C a2.�/

sin.x
p
�/p

�
C om.1/p

�

�

�
b1.�/

� cos.x
p
�/C b2.�/

� sin.x
p
�/p

�
C om.1/p

�

�
:
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This identity is easily transformed into

cos2.x
p
�/.b1.�/a1.�/

� � a1.�/b1.�/�/

C sin2.x
p
�/

�
.b2.�/a2.�/

� � a2.�/b2.�/�/

C cos.x
p
�/ sin.x

p
�/p

�
.b1.�/a2.�/

� � a1.�/b2.�/
�

C b2.�/a1.�/
� � a2.�/b1.�/

�/

C om.1/p
�

cos.x
p
�/.b1.�/ � a1.�//

C om.1/p
�

sin.x
p
�/p

�
.b2.�/ � a2.�//

C om.1/p
�

cos.x
p
�/.a1.�/

� � b1.�/�/

C om.1/p
�

sin.x
p
�/p

�
.a2.�/

� � b2.�/�/ D 0:

(33)

Fixing � 2 RC and setting in (33) xk D 2�k=
p
� we obtain

b1.�/a1.�/
� � a1.�/b1.�/�

C om.1/p
�
.b1.�/ � a1.�//C om.1/p

�
.a1.�/

� � b1.�/�/ D 0:

Passing in this identity to the limit as k ! C1 we arrive at formula (25).
Next setting in (33) xk D .2�kC�=2/=

p
� one derives

b2.�/a2.�/
� � a2.�/b2.�/�

C om.1/

�
.b2.�/ � a2.�//C om.1/

�
.a2.�/

� � b2.�/�/ D 0:

Passing here to the limit as k ! C1 one arrives at formula (26).
Finally, setting in (33) xk D .�kC�=4/=

p
�; and tending k to C1 we obtain (27).

Lemma 3.3. Let Q.�/ D Q.�/� 2 L1.RC;Cm�m/. Let aj .�/ and bj .�/, j 2 ¹1; 2º,
be given by (19) and (20), respectively. Then the following holds:

a2.�/b1.�/
��b2.�/a1.�/� D b1.�/a2.�/

��a1.�/b2.�/� D Im; � 2 RC: (34)
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Proof. Inserting expressions (17) and (18) for S.x; z/ and C.x; z/ into (32) with
z D � 2 RC we obtain

�
b1.�/ cos.x

p
�/C b2.�/

sin.x
p
�/p

�
C om.1/p

�

�

�
� a1.�/�

p
� sin.x

p
�/C a2.�/

� cos.x
p
�/C om.1/p

�

�

�
�
a1.�/ cos.x

p
�/C a2.�/

sin.x
p
�/p

�
C om.1/p

�

�

�
� b1.�/�

p
� sin.x

p
�/C b2.�/

� cos.x
p
�/C om.1/p

�

�
D Im:

This formula is obviously equivalent to

a2.�/b1.�/
� � b2.�/a1.�/

�

C
p
� cos.x

p
�/ sin.x

p
�/.a1.�/b1.�/

� � b1.�/a1.�/�/
C 1p

�
cos.x

p
�/ sin.x

p
�/.b2.�/a2.�/

� � a2.�/b2.�/�/

C om.1/p
�

cos.x
p
�/.b1.�/C a2.�/

� � a1.�/ � b2.�//

C om.1/p
�

p
� sin.x

p
�/.b1.�/

� � a1.�/�/

C om.1/p
�

sin.x
p
�/p

�
.b2.�/ � a2.�// D Im:

Taking into account identities (25) and (26) one gets

a2.�/b1.�/
� � b2.�/a1.�/�

C om.1/p
�

cos.x
p
�/.b1.�/C a2.�/

� � a1.�/ � b2.�/
�/

C om.1/ sin.x
p
�/.b1.�/

� � a1.�/�/

C om.1/

�
sin.x

p
�/.b2.�/ � a2.�// D Im:

(35)

Fix � 2 RC and set xk D .2�kC�=2/=
p
�, k 2 N: Passing in (35) to the limit as

k ! C1 we obtain

a2.�/b1.�/
� � b2.�/a1.�/� D Im; � 2 RC;

i.e., the �rst identity in (34). The second identity in (34) is implied by combining the
�rst one with (27).
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In what follows we need also the second group of identities.

Lemma 3.4. Let Q.�/ D Q.�/� 2 L1.RC;Cm�m/. Let aj .�/ and bj .�/, j 2 ¹1; 2º,
be the matrix functions given by (19) and (20), Then the following relations hold:

b1.�/
�a2.�/ � b2.�/�a1.�/ D Im; � 2 RC; (36)

b1.�/
�b2.�/ D b2.�/

�b1.�/; � 2 RC; (37)

a1.�/
�a2.�/ D a2.�/

�a1.�/; � 2 RC: (38)

Proof. The second identity of (30) yields

C.x; Nz/�S 0.x; z/ � C 0.x; Nz/�S.x; z/ D Im; z 2 bC; (39a)

and

C.x; Nz/�C 0.x; z/ D C 0.x; Nz/�C.x; z/; z 2 bC; (39b)

S.x; z/�S 0.x; z/ D S 0.x; z/�S.x; z/; z 2 bC: (39c)

Let us prove identity (36). Inserting asymptotic expressions (17), (18) and (28), (29)
for S.x; z/ and C.x; z/ and their derivatives into (39a) we obtain

�
b1.�/

� cos.x
p
�/C b2.�/

� sin.x
p
�/p

�
C om.1/p

�

�

�
� a1.�/

p
� sin.x

p
�/C a2.�/ cos.x

p
�/C om.1/p

�

�

�
�

� b1.�/�
p
� sin.x

p
�/C b2.�/

� cos.x
p
�/C om.1/p

�

�

�
a1.�/ cos.x

p
�/C a2.�/

sin.x
p
�/p

�
C om.1/p

�

�
D Im; � 2 RC:

This identity is easily transformed into

b1.�/
�a2.�/ � b2.�/�a1.�/

C om.1/p
�

cos.x
p
�/.b1.�/

� � b2.�/� C a2.�/ � a1.�//

C om.1/ sin.x
p
�/.b1.�/

� � a1.�//

� om.1/

�
sin.x

p
�/.a1.�/C a2.�// D Im:

Passing here to the limit as x ! C1 we arrive at identity (36).
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Let us prove identity (37). Inserting asymptotic expressions (17), (18) and (28),
(29) for S.x; �/ and C.x; �/ and their derivatives into (39b) we obtain

�
b1.�/

� cos.x
p
�/C b2.�/

� sin.x
p
�/p

�
C om.1/

�

�
� b1.�/

p
� sin.x

p
�/C b2.�/ cos.x

p
�/C om.1/

�

D
�

� b1.�/�
p
� sin.x

p
�/C b2.�/

� cos.x
p
�/C om.1/

�

�
b1.�/ cos.x

p
�/C b2.�/

sin.x
p
�/p

�
C om.1/

�
:

Setting here xk D 2�k=
p
� and tending k to C1 we arrive at identity (37).

Identity (38) is obtained from (39c) in a similar manner.

3.2 Investigating of the Weyl function

Let Q.�/ D Q.�/� 2 L1.RC;Cm�m/. Denote by ACloc.RC/ the set of locally
absolutely continuous functions on RC, i.e., f 2 ACloc.RC/ if f 2 ACŒ0; b� for
any b 2 RC. We set

Af WD LQ.f /; x 2 RC; f 2 dom.A/;

dom.A/ WD
´
f 2 L2.RC;Cm/

ˇ̌
ˇ̌
ˇ

f; f 0 2 ACloc.RC;Cm/;
LQ.f / 2 L2.RC;Cm/; f .0/ D f 0.0/ D 0

µ

(40)

and note (see [3] and [36]) that the operator A coincides with the minimal operator
Hmin
Q associated with expression LQ. The adjoint operator A� is given by

A�f WD LQ.f /; x 2 RC; f 2 dom.A�/;

dom.A�/ WD
´
f 2 L2.RC;Cm/

ˇ̌
ˇ̌
ˇ

f; f 0 2 ACloc.RC;Cm/;
LQ.f / 2 L2.RC;Cm/

µ

and coincides with the maximal operatorHmax
Q associated withLQ (see [3] and [36]).

It is important to note that the operator A is simple.

Lemma 3.5. LetQ.�/ D Q.�/� 2 L1.RC;Cm�m/. Then a triplet … D ¹H; �0; �1º
with

H D C
m; �0f D f .0/; �1f D f 0.0/; f D .f1; : : : ; fm/

T 2 dom.Hmax
Q /;

(41)
is a boundary triplet for the operator A� D Hmax

Q .

We leave the proof to the reader.
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Proposition 3.6. Let Q.�/ D Q.�/� 2 L1.RC;Cm�m/ and let M.�/ be the Weyl
function corresponding to the boundary triplet (41). Then the following holds:

(i) the matrix-valued functions N1.z/,

N1.z/ D Im

2i
p
z

C 1

2i
p
z

ˆ 1

0

eit
p
zQ.t/S.t; z/dt; (42)

and

N2.z/ D Im

2
� 1

2i
p
z

ˆ 1

0

eit
p
zQ.t/C.t; z/dt; (43)

are both well de�ned for z 2 bC0 and continuous as well as holomorphic in
C n Œ0;1/;

(ii) the following relation holds:

N1.z/M.z/ D N2.z/; z 2 CC: (44)

Proof. (i) The properties of the functions N1.�/ and N2.�/ follow immediately from
the estimates (22) and (24).

(ii) Fix z 2 CC and let
p
z D �C iˇ; ˇ > 0. Then it follows from (21) that

S.x; z/ D �e
�ixp

z

2i
p
z
Im COm.e

�ˇx/

� 1

2i
p
z

ˆ 1

0

e�i.x�t/pzQ.t/S.t; z/dt

C 1

2i
p
z

ˆ 1

x

e�i.x�t/pzQ.t/S.t; z/dt

COm

�
ˆ x

0

e�ˇ.x�t/jQ.t/S.t; z/jdt
�

as x ! 1. Since Q 2 L1.RC;Cm�m/ it follows from (22) that for each z 2 CC
one has the estimate

jS.x; z/j D eˇxjS1.x; z/j � 1

jpzje
ˇx exp

� 1p
z

ˆ x

0

jQ.t/jdt
�

D Om.e
ˇx/; (45)

as x ! 1. It follows from the obvious identity je�i.x�t/pzj D e.x�t/ˇ that

Om

�
ˆ x

0

e�ˇ.x�t/jQ.t/S.t; z/jdt
�

D Om

�
ˆ x

0

eˇ.2t�x/jQ.t/jdt
�

D Om

�
eˇ.x�2ı/

ˆ x�ı

0

jQ.t/jdt
�

COm

�
eˇx
ˆ x

x�ı
jQ.t/jdt

�
D om.e

ˇx/
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as x ! 1, z 2 CC. Moreover, the inequality (45) yields that
ˆ 1

x

e�i.x�t/pzQ.t/S.t; z/dt D Om

�
eˇx
ˆ 1

x

jQ.t/jdt
�

D om.e
ˇx/

as x ! 1, z 2 CC. Combining all relations we arrive at the desired asymptotic
estimate

S.x; z/ D e�ixp
z¹�N1.z/C om.1/º; x ! 1; z 2 CC; (46)

with N1.�/ given by (42).
Similarly we obtain from (23) that

C.x; z/ D e�ixp
z

2z
Im COm.e

�ˇx/

� 1

2i
p
z

ˆ 1

0

e�i.x�t/pzQ.t/C.t; z/dt

C 1

2i
p
z

ˆ 1

x

e�i.x�t/pzQ.t/C.t; z/dt

COm

�
ˆ x

0

e�ˇ.x�t/jQ.t/C.t; z/jdt
�
;

as x ! 1, z 2 CC. Moreover, inequality (24) yields jC.x; z/j D Om.e
ˇx/ as

x ! 1, z 2 CC. Using this relation and repeating the above reasoning we derive
an asymptotic formula for C.�; z/ similar to (46):

C.x; z/ D e�ixp
z¹N2.z/C om.1/º; x ! 1; z 2 CC; (47)

where N2.�/ is given by (43).
We emphasize that in contrast to the functions aj ; bj ; j 2 ¹1; 2º, de�ned on RC,

the matrix functions Nj .�/, j 2 ¹1; 2º, are well de�ned and holomorphic in CC.
It is easily seen that the Weyl solution of equation (16) is given by

Y.x; z/ D C.x; z/C S.x; z/M.z/ 2 L2.RC;Cm�m/;

where M.�/ is the Weyl function corresponding to the triplet (41). Combining this
representation with asymptotic relations (46) and (47) one gets

e�ixp
z.N2.z/ �N1.z/M.z/C om.1// 2 L2.RC;Cm�m/:

Since e�ixp
z 62 L2.0;1/ for z 2 CC, the later relation implies (44).
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In the following we need some properties of the functions N1.z/ and N2.z/.

Lemma 3.7. Let Q.�/ D Q.�/� 2 L1.RC;Cm�m/. Let also N1.�/ and N2.�/ be the
functions given by (42) and (43), respectively. In addition, the following holds.

(i) The non-tangential limits

N1.�/ D lim
z!��

N1.z/ D �1
2
a1.�/ � ia2.�/

2
p
�
; (48a)

N2.�/ D lim
z!��

N2.z/ D 1

2
b1.�/C ib2.�/

2
p
�
; (48b)

exist and are invertible for any � 2 RC.

(ii) For each bounded interval Œa; b� � RC there is a rectangle R.a; b; "/ WD
Œa; b�� Œ0; "�, " > 0 such that N1.�/�1 and N2.�/�1 exist and are continuous in
R.a; b; "/. In particular, it holds that

lim
z!��

N1.z/
�1 D N1.�/

�1; lim
z!��

N2.z/
�1 D N2.�/

�1 (49)

for � 2 RC.

(iii) For each � 2 R� WD .�1; 0/ one has

N1.�/ D lim
z!��

N1.z/ D � Im

2
p

j�j
� 1

2
p

j�j

ˆ 1

0

e�pj�jtQ.t/S.t; �/dt;

(50a)

N2.�/ D lim
z!��

N2.z/ D Im

2
C 1

2
p

j�j

ˆ 1

0

e�pj�jtQ.t/C.t; �/dt: (50b)

Proof. (i) Using (19) and (20) we verify the right-hand sides of (48).

Let us show that ker.N1.�// D ¹0º for every � 2 RC. It follows from (48) with
account of identity (38) that

N1.�/
�N1.�/ D 1

4

�
a1.�/

� � i a2.�/
�

p
�

��
a1.�/C i

a2.�/p
�

�

D 1

4�
.�a1.�/

�a1.�/C a2.�/
�a2.�//

C i

4
p
�
.a1.�/

�a2.�/ � a2.�/�a1.�//

D 1

4�
Œ� a1.�/

�a1.�/C a2.�/
�a2.�/� � 0; � 2 RC:

(51)
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On the other hand, (36) implies ker.a1.�// \ ker.a2.�// D ¹0º. Combining this
relation with (51) one gets ker.N1.�// D ¹0º for � 2 RC. HenceN1.�/�1 exists for
each � 2 RC. Since N1.z/ is continuous in bC0 one gets that for any closed interval
Œa; b� � RC there is suf�ciently small " > 0 such that the matrix-valued function
N1.z/ is invertible and continuous in the rectangle R.a; b; "/.

Let us show that ker.N2.�// D ¹0º for every � 2 RC. From the second identity
of (48) we derive similarly as above that

N2.�/
�N2.�/ D 1

4

�
b1.�/

� � i b2.�/
�

p
�

��
b1.�/C i

b2.�/p
�

�

D 1

4�
.� b1.�/

�b1.�/C b2.�/
�b2.�//C i

4
p
�
.b1.�/

�b2.�/ � b2.�/
�b1.�//

D 1

4�
Œ� b1.�/

�b1.�/C b2.�/
�b2.�/� � 0; � 2 RC:

(52)

At the same time, taking adjoints in (36) one derives that ker b1.�/\ker b2.�/ D ¹0º
for each � 2 RC. Combining this relation with (52) one gets kerN2.�/ D ¹0º for
� 2 RC.

(ii) The existence of the rectangle R.a; b; "/ can be proven as above. The rela-
tions (49) immediately follow.

(iii) The relations (50) follow from the de�nitions (42) and (43).

Theorem 3.8. LetQ.�/ D Q.�/� 2 L1.RC;Cm�m/. Further, letHQ be the Dirichlet
realization of (16) and letM.�/ be the Weyl function corresponding to the boundary
triplet (41). Then the following holds.

(i) The non-tangential boundary values M.� C i0/ WD limz!��M.z/ exist for
each � 2 RC and

M.�C i0/ D N1.�/
�1N2.�/

D �.
p
�a1.�/C ia2.�//

�1.
p
�b1.�/C ib2.�//; � 2 RC:

(53)

In particular, one has

Im.M.�C i0// D 1

4
p
�
.N1.�/

�N1.�//�1

D
p
�.�a1.�/

�a1.�/C a2.�/
�a2.�//�1; � 2 RC:

(54)
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(ii) The determinant d1.z/ D det.N1.z// is holomorphic in C n Œ0;1/ and the set
of its zeros ƒ1 is discrete. The Weyl function admits the representation

M.z/ D N1.z/
�1N2.z/; z 2 C nƒ1: (55)

(iii) The corresponding spectral measure †M .�/ (see (12)) on RC is given by

†M .t / D 1

�

ˆ t

0

p
�.� a1.�/

�a1.�/C a2.�/
�a2.�//�1d�

D 1

4�

ˆ t

0

1p
�
.N1.�/

�N1.�//�1d�:
(56)

In particular, the spectral measure†M .�/ is absolutely continuous with contin-
uous density d†M .�/=d�, � 2 RC, of maximal rank.

(iv) The operator HQ is semi-bounded from below and its negative spectrum is
either �nite or discrete with the only accumulation point at zero. Its non-negative
part is purely absolutely continuous,H ac

Q D HQEHQ
.RC/ andNH ac

Q
.�/ D m,

� 2 RC. In particular, �ac.HQ/ D Œ0;1/, �sc.HQ/ D �pp.HQ/ \ RC D ;,
and �pp.HQ/ \ R� � ƒ1 \ R�.

Proof. (i) For any closed interval Œa; b� � RC there is an " > 0 such that N1.z/�1
exist and is continuous. From (44) we obtain the representation

M.z/ D N1.z/
�1N2.z/; z 2 R.a; b; "/:

Using (49) we �nd the existence of the limitM.�C i0/ D limz!��M.z/ and

M.�C i0/ D lim
z!��

M.z/ D N1.�/
�1N2.�/ (57)

for any � 2 RC. Inserting (48) into (57) we prove (53).
First let us compute the imaginary part

MI .�C i0/ D Im.M.�C i0//

ofM.�C i0/. It follows from (53) that

MI .�C i0/ D 1

2i
N1.�/

�1.N2.�/N1.�/� �N1.�/N2.�/�/.N1.�/�/�1:
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Notice that

N2.�/N1.�/
� � N1.�/N2.�/

�

D 1

4

h�
b1.�/C i

b2.�/p
�

��
� a1.�/� C i

a2.�/
�

p
�

�

C
�
a1.�/C i

a2.�/p
�

��
b1.�/

� � i b2.�/
�

p
�

�i

D 1

4

h
.a1.�/b1.�/

� � b1.�/a1.�/�/C a2.�/b2.�/
� � b2.�/a2.�/�
�

C ip
�
.b1.�/a2.�/

� � a1.�/b2.�/� C a2.�/b1.�/
� � b2.�/a1.�/�/

i
:

Using relations (25), (26), and (34) we obtain

N2.�/N1.�/
� �N1.�/N2.�/� D 2i

4
p
�
Im

which yields

MI .�C i0/ D 1

4
p
�
N1.�/

�1.N1.�/�/�1 D 1

4
p
�
.N1.�/

�N1.�//�1; � 2 RC

This proves the �rst statement in (54). Inserting (51) into this expression we arrive
at the second statement in (54).

Note that the functions aj .�/ are continuous on RC. Moreover, as it follows
from (19), a1.0/ D 0 and a2.0/ D Im.

(ii) Since the function N1.�/ is holomorphic in C n Œ0;1/, the determinants d1.�/
is holomorphic in C n Œ0;1/. Hence the set of its zeros ƒ1 is discrete. Taking into
account (44) we arrive at (55).

(iii) Since the normal limit M.� C i0/ exists for every � 2 RC, formula (56)
follows either from the Stieltjes inversion formula or from the Fatou theorem.

(iv) Since the limit M.� C i0/ for any � 2 RC is invertible we get from
Proposition 2.9 that Œ0;1/ � �ac.HQ/. It follows from Theorem 2.10 (i) that
�pp.HQ/ \ RC D ;. Finally, Theorem 2.10 (ii) yields that �sc.HQ/ \ RC D ;.
Hence, HQ has no positive singular spectrum and the part HQEHQ

.RC/ is purely
absolutely continuous. Finally, Proposition 2.11 implies NAac

0
.�/ D NHQ

.�/ D m

for � 2 RC. Hence, the part HQEHQ
.RC/ is purely absolutely continuous of con-

stant multiplicity m.
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Since the representation (55) is valid for all points of C n Œ0;1/ outside of ƒ1
one easily gets that M.� C i0/ D limz!��M.z/ D N1.�/

�1N2.�/ holds all
� 2 R� nƒ1, where R� WD .�1; 0/. N1.�/ and N2.�/, � 2 R� are given by (50).
HenceM.�/ is holomorphic in C n ¹.ƒ1 \ R�/ [ Œ0;1/º. This immediately yields
that Im.M.� C i0// D 0 for � 2 R� n ƒ1. By Theorem 2.10 (ii) and (iii) we
�nd that �sc.HQ/ \ R� D ; and �ac.HQ/ \ R� D ;. Hence �sc.HQ/ D ;,
�ac.HQ/ D Œ0;1/ and �pp.HQ/ \ RC D ;. However �pp.HQ/ � ƒ1 \ R�.

It remains to show that HQ is semi-bounded. To this end we have to check that
the set ƒ1 is semi-bounded form below. From (50) and estimate (22) we get

lim
�!�1

2
p

j�jN1.�/ D �Im: (58)

Assuming now ƒ1 is not bounded from below. Then there is a sequence ¹�kºk2N,
�k 2 ƒ1 \ R�, tending to �1 as k ! 1. Hence limk!1 2

p
j�k jN1.�k/ D 0

which contradicts (58).

Corollary 3.9. Let Q.�/ D Q.�/� 2 L1.RC;Cm�m/ and let zA D zA� be any self-
adjoint extension of A. Let also z… D ¹H; z�0; z�1º be a boundary triplet for A� such
that zA D A� � ker.z�0/ and let �M.�/ be the corresponding Weyl function.
(i) The limit �M.�C i0/ WD limz!�� �M.z/ exists for any � 2 RC and �MI .�C i0/

is positively de�nite. Moreover, the corresponding spectral measure† �M admits
the representation

† �M .t / D 1

�

ˆ t

0

.M.�/�X�
21CX�

22/
�1MI .�/.X21M.�/CX22/�1d�; t > 0:

(59)

(ii) The operatorsE zA.RC/ zA andEHQ
.RC/HQ are unitarily equivalent and, hence

zAac D zAE zA.RC/ and N zAac.�/ D m, � 2 RC. Moreover, �ac. zA / D Œ0;1/

and �sc. zA/ D �pp. zA / \ RC D ;.
The operator zA is semi-bounded from below and its negative spectrum is either
�nite or discrete with the only accumulation point at zero.

Proof. (i) There is a boundary triplet z… D ¹H; z�0; z�1º for A� such that

zA D A� � ker.z�0/:
By Proposition 2.5, there exists a J -unitary matrix X D .Xij /

2
i;jD1 such that (13)

holds. If �M.�/ is the Weyl function of z…, then 0 2 �.X21M.z/CX22/,

�M.z/ D X.M.z// WD .X11M.z/CX12/.X21M.z/CX22/
�1; z 2 �. zA/: (60)
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Denote by C
m�mC the set of strictly dissipative m �m matrices, i.e.,

C
m�m
C WD ¹T 2 C

m�m j TI D .2i/�1.T � T �/ � " D ".T / > 0º:

By Theorem 3.8 M.�/ WD limz!��M.z/ exists for each � 2 RC and M.�/ 2
Cm�mC . Combining this fact with the Kreı̆n– Šmul0jan theorem (see Theorem 4.1
in [29]) one gets

0 2 �.X21M.�/CX22/ and X.M.�// 2 C
m�m
C ; � 2 RC:

Hence

�M.�/ WD lim
z!��

�M.z/ D .X11M.�/CX12/.X21M.�/CX22/
�1; � 2 RC: (61)

Using the J -unitarity of X D .Xij /
2
i;jD1 it follows from (61) that

�MI .�/ WD .2i/�1 �M.�/
D .M.�/�X�

21 CX�
22/

�1MI .�/.X21M.�/CX22/
�1; � 2 RC:

One obtains (59) by combining this relation with the Stieltjes inversion formula.

(ii) These conclusions can be proved similarly to those of Theorem 3.8(iv). We
leave the proof to the reader.

Remark 3.10. Theorem 3.8 generalizes the classical Titchmarsh’s result (see Chap-
ter 5 in [39]) to the case of Sturm–Liouville operator with a matrix-valued summable
potential and coincides with it in the scalar case (m D 1).

Remark 3.11. If a potential matrix Q has a �nite �rst moment, that is if we have
´

RCxjQ.x/jdx < 1; then the positive part EHQ
.RC/HQ of HQ is purely abso-

lutely continuous of constant multiplicity m:Moreover �p.HQ/ D �p.HQ/\R� is
�nite (see Theorem 2.1.1 in [1]).

4 Sturm–Liouville operator with point interactions

Let Q 2 L1.RC;Cm�m/ such that Q.x/ D Q.x/� for a.e. x 2 RC. Further,
let X D ¹xnºpnD1 � RC, p < 1 be a strictly increasing sequence of positive
numbers, xnC1 > xn. Denote dn WD xn � xn�1, x0 WD 0, and assume that Q 2
L1.RC;Cm�m/. Let also ¹˛nºpnD1 be the sequence of self-adjoint m �m�matrices.
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In this section we consider the matrix-valued Schrödinger operator HX;˛;Q in
L2.RC;Cm�m/ associated with the formal differential expression

LX;˛;Q WD � d2

dx2
CQ.x/C

X

xn2X
˛nı.x � xn/; (62)

where ı denotes the Dirac delta. This operator describes ı–interactions on a setX D
¹xnºpnD1 � RC, p < 1, and the coef�cient ˛n 2 Cm�m is called the strength of the
interaction at the point x D xn.

In L2.RC/ we de�ne the closed symmetric operator A associated with (62) by

.Af /.x/ WD LQ.f /.x/; x 2 RC nX; f 2 dom.A/;

dom.A/

D

8
ˆ̂̂
<
ˆ̂̂
:
f 2 L2.RC n X;Cm/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

f; f 0 2 ACloc.RC nX;Cm/;
LQ.f / 2 L2.RC;Cm/;

f .0/ D 0; f .xn˙/ D 0; n 2 ¹1; : : : ; pº;
f 0.0/ D 0; f 0.xn˙/ D 0; n 2 ¹1; : : : ; pº

9
>>>=
>>>;
:

(63)

Notice that A is a minimal operator associated with the differential expression (62).
In what follows the minimal operator is denoted byHmin

X;˛;Q. One has

dom.Hmin
X;˛;Q/ D ¹f 2 dom.Hmax

Q / j f .xn/ D f 0.xn/ D 0; n 2 ¹0; 1; : : : ; pºº:

The adjoint operator A� is given by

.A�f /.x/ WD LQ.f /.x/; x 2 RC n X; f 2 dom.A�/;

dom.A�/ D
´
f 2 L2.RC n X;Cm/

ˇ̌
ˇ̌
ˇ
f; f 0 2 ACloc.RC nX;Cm/;

LQ.f / 2 L2.RC;Cm/

µ
:

The operator A� is called the maximal operator associated with (62) and is denoted
by Hmax

X;˛;Q. We consider the self-adjoint extension HX;˛;Q de�ned by

HX;˛;Q D A� � dom.HX;˛;Q/:

We have

dom.HX;˛;Q/ D

8
<̂

:̂
f 2 dom.Hmax

X;˛;Q/

ˇ̌
ˇ̌
ˇ̌
ˇ

f .0/ D 0; f .xnC/ D f .xn�/;
f 0.xnC/ � f 0.xn�/ D ˛nf .xn/;

n 2 ¹1; : : : ; pº

9
>=
>;
; (64)
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where ˛n are self-adjoint matrices. Clearly, if ˛n D 0 for all n 2 ¹1; : : : ; pº,
thenHX;˛;Q coincides with the Dirichlet realizationHQ of the previous section, i.e.,
HX;0;Q D HQ.

LetHmax
Q be the maximal operator associated with the differential expressionLQ.

Proposition 4.1. Let Q 2 L1.RC;Cm�m/ such that Q.x/ D Q.x/� for a.e.
x 2 RC. If the maximal operator Hmax

Q has no positive eigenvalues, then the op-
erator HX;˛;Q also has no positive eigenvalues, i.e., �p.HX;˛;Q/ \ RC D ;.

Proof. 1. Consider equation (16) in L2..xp;C1/;Cm/. Let us show that any solu-
tion of this equation with � D �0 > 0 does not belong to L2..xp;1/;Cm/. Assume
the contrary, that is there exists f 2 L2..xp;1/;Cm/ which satis�es the equation

� d2f .x/

dx2
C ¹Q.x/ � �0Imºf .x/ D 0; x 2 .xp;C1/: (65)

Let C0 D f .xpC/, C1 D f 0.xpC/ 2 Cm and jC0j C jC1j ¤ 0. Denote by zf the
solution of equation (65) on .0; xp/ satisfying the initial conditions

Qf .xp�/ D C0; Qf 0.xp�/ D C1:

Clearly, Qf 2 L2..0; xp/;Cm/, so that the function

Of .x/ WD
´
f .x/ if x 2 .xp;C1/;

Qf .x/ if x 2 .0; xp/;

is well de�ned on RC and belongs to dom.Hmax
Q /. Thus, Of 6D 0; satis�es equa-

tion (65) and Of 2 L2.RC;Cm/. Hence �0 2 �.Hmax
Q /. This contradicts the assump-

tion of the proposition, and hence C0 D C1 D 0.

2. Let us show that �0 … �p.HX;˛;Q/: Assume the contrary. Then there exists a
non-trivial f 2 dom.HX;˛;Q/ such that

HX;˛;Qf D �0f:

On the interval .xp;C1/ this equation turns into (65). According to the �rst step
f .x/ D 0 for x 2 .xp;C1/. Hence f .xpC/ D f 0.xpC/ D 0:

On the other hand, due to (64) the inclusion f 2 dom.HX;˛;Q/ yields

f .xp�/ D f .xpC/ D 0; f 0.xp�/ D f 0.xpC/� p̨f .xp/ D f 0.xpC/ D 0:

Therefore equation (65) restricted to the interval .xp�1; xp/ leads to the Cauchy prob-
lem

�f 00.x/CQ.x/f .x/ D �0f .x/; x 2 .xp�1; xp/; f .xp�/ D f 0.xp�/ D 0:
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By the Cauchy uniqueness theorem this problem has a trivial solution on .xp�1; xp/,
i.e., f .x/ D 0 for x 2 .xp�1; xp/. Repeating this procedure p � 1 times we prove
by induction that f � 0 on RC. Thus, �0 … �p.HX;˛;Q/ \ RC.

Corollary 4.2. LetQ 2 L1.RC;Cm�m/ such thatQ.x/ D Q.x/� for a.e. x 2 RC.
Then �p.HX;˛;Q/ \ RC D ;.

Proof. It is well known that under the assumption Q 2 L1.RC;Cm�m/ the maxi-
mal operator Hmax

Q has no positive eigenvalues. In particular, it follows from Corol-
lary 3.9. Proposition 4.1 completes the proof.

Let us recall the following de�nition of local interactions from [11].

De�nition 4.3 ([11]). LetA be the minimal operator associated with expression (62)
and given by (63) where X is either �nite or in�nite. A symmetric extension zA with
A � zA � A� is called a one-dimensional Schrödinger operator with local point
interactions in X if the Lagrange brackets

Œf; g�x WD f 0.xC/g.xC/ � f .xC/g0.xC/

are continuous in .0;1/ for every pair f; g 2 dom zA:

De�ne

f �
C .x/ WD

�
f .x�/ � if 0.x�/
f .xC/C if 0.xC/

�
and f C

� .x/ WD
�
f .xC/ � if 0.xC/
f .x�/C if 0.x�/

�
:

Following [11] we de�ne the class of extensions of A with local point interactions:

domA¹Uxj
º D ¹f 2 domA� j f C

� .xj / D Uxj
f �

C .xj /º; j 2 ¹1; : : : ; pºº: (66)

where ¹Uxj
º is a family of unitary 2 � 2�matrices.

The following characterization of the operators with local point interactions was
obtained in [11].

Theorem 4.4 ([11]). An extension zA � A is a one-dimensional Schrödinger operator
with local point interactions in X if and only if zA is a selfadjoint extension of A for
some choice of unitary 2 � 2�matrices ¹Uxj

I xj 2 Xº:

For instance, the unitary matrix

Uxj
D e�i j̨

�
cos j̨ �i sin j̨

�i sin j̨ cos j̨

�
for j̨ 2

�
� �

2
;
�

2

�
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de�nes a ı�interaction at xj of strength 2 tan j̨ ; and

Uxj
D ei j̨

�
cos j̨ �i sin j̨

�i sin j̨ cos j̨

�
for j̨ 2

�
� �

2
;
�

2

�

de�nes a ı0�interaction at xj of strength 2 tan j̨ :

Next we extend Corollary 4.1 to the case of operators with local point interactions
in X .

Proposition 4.5. Let A be the minimal operator associated with (62). Let

Uxj
D
�
u1;j u2;j
u3;j u4;j

�
; j 2 ¹1; : : : ; pº;

and let zH D A¹Uxj
º be an extension of A given by (66). Then �p. zH/ \ RC D ;

whenever u1;j ¤ 0:

Proof. We mimic the proof of Proposition 4.1. Let zHf D �f for some � > 0:

Under the assumptionQ 2 L1.RC;Cm�m/, the maximal operatorHmax
Q has no pos-

itive eigenvalues, as mentioned in the proof of Corollary 4.1. This implies f .x/ D 0

for x 2 .xp ;1/. To prove that f .x/ D 0 for x 2 .xp�1; xp/ it suf�ces to prove the
implication

f .xpC/ D f 0.xpC/ D 0 H) f .xp�/ D f 0.xp�/ D 0 (67)

whenever u1;p ¤ 0: Inserting equalities f .xpC/ D f 0.xpC/ D 0 in the pth relation
in (66) yields

�
0

f .xp�/C if 0.xp�/
�

D
�
u1;j u2;j
u3;j u4;j

��
f .xp�/ � if 0.xp�/

0

�
:

This identity is easily transformed into the following one:
�
u1;p.f .xp�/ � if 0.xp�//
u3;p.f .xp�/ � if 0.xp�//

�
D
�

0

f .xp�/C if 0.xp�/
�
:

Since u1;p ¤ 0, this identity splits into the following two ones:

f .xp�/ � if 0.xp�/ D 0 and f .xp�/C if 0.xp�/ D 0:

In turn, the latter yields the required implication (67). The rest of the proof is similar
to that of Proposition 4.1.
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Theorem 4.6. Let Q 2 L1.RC;Cm�m/ such that Q.x/DQ.x/� for a.e. x 2 RC.
Then the singular continuous spectrum of any self-adjoint extension zH of the opera-
tor A given by (63) is empty, i.e., �sc. zH/ \ R D ;.

Proof. 1. Let Aj be the minimal operator associated with the differential expres-
sion LQ on L2.�j ;Cm/, �j WD .xj�1; xj /, j 2 ¹1; : : : ; pº. It is easily seen
that n˙.Aj / D 2m; j 2 ¹1; : : : ; pº. It is well known and easily checked that

…j D ¹Hj ; �.j /0 ; �
.j /
1 º with

Hj D C
2m; �

.j /
0 f D

�
f .xj�1C/
f .xj�/

�
; �

.j /
1 f D

�
f 0.xj�1C/
�f 0.xj�/

�
; (68)

j 2 ¹1; : : : ; pº, is a boundary triplet for the operator A�
j . The corresponding Weyl

function is given by

Mj .z/ D
��Sj .xj�; z/�1Cj .xj�; z/ Sj .xj�; z/�1

.Sj .xj�; Nz/�/�1 �S 0
j .xj�; z/Sj .xj�; z/�1

�
;

j 2 ¹1; : : : ; pº, z 2 C˙, where Sj .�; z/ and Cj .�; z/ are solutions of

LQ.Sj .x; z// D zSj .x; z/ and LQ.Cj .x; z// D zCj .x; z/; (69)

x 2 �j , which satisfy the boundary conditions

Cj .xj�1C; z/ D S 0
j .xj�1C; z/ D Im; (70a)

Sj .xj�1C; z/ D C 0
j .xj�1C; z/ D Om; (70b)

for z 2 C˙. LetApC1 be the minimal operator associated with differential expression
LQ on L2.�pC1;Cm/, �pC1 WD .xp;1/. Notice that n˙.ApC1/ D m. One easily

checks that…pC1 D ¹HpC1; �.pC1/
0 ; �

.pC1/
1 º,

HpC1 D C
m; �

.pC1/
0 f D f .xpC/; �

.pC1/
1 f D f 0.xpC/; (71)

is a boundary triplet for A�
pC1. One easily checks that the operator ApC1 is unitarily

equivalent to the operator A de�ned in L2.RC;Cm/ by (40), however, with potential
QpC1.x/ WD Q.xCxp/, x 2 RC, instead ofQ. We denote this operator by AQpC1

.
Obviously the boundary triplet … D ¹Cm; �0; �1º given by (41) is also a boundary
triplet for A�

QpC1
. Let MpC1.�/ be the Weyl function of the boundary triplet …pC1

with respect to ApC1 and letMQpC1
.�/ the Weyl function of the boundary triplet …

with respect to AQpC1
. One checks thatMpC1.z/ D MQpC1

.z/, z 2 C˙.
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By SpC1.�; z/ and CpC1.�; z/ we denote solutions of the differential equations
LQpC1

.SpC1.x; z// D zSpC1.x; z/; LQpC1
.CpC1.x; z//.x/ D zCpC1.x; z/;

considered on RC and satisfying the initial conditions

S 0
pC1.0; z/ D CpC1.0; z/ D Im and SpC1.0; z/ D C 0

pC1.0; z/ D Om; z 2 C:

Similar to (69) and (70) we can introduce the solutions SpC1.x; z/ and CpC1.x; z/
for x 2 �pC1. Notice that

SpC1.x C xp; z/ D SQpC1
.x; z/ and CpC1.x C xp; z/ D CQpC1

.x; z/;

x 2 �jC1. By Proposition 3.6 the Weyl functionMQpC1
.�/ satis�es the relation

N1.z/MQpC1
.z/ D N2.z/; z 2 CC; (72)

where

N1.z/ D Im

2i
p
z

C 1

2i
p
z

ˆ 1

0

ei
p
ztQ.t C xp/SQpC1

.t; z/dt; (73a)

N2.z/ D Im

2
� 1

2i
p
z

ˆ 1

0

ei
p
ztQ.t C xp/CQpC1

.t; z/dt; (73b)

z 2 CC. UsingMQpC1
.z/ D MpC1.z/, z 2 C˙, we �nd

N1.z/MpC1.z/ D N2.z/; z 2 CC;

Notice thatMj .�/, j 2 ¹1; : : : ; pº, are meromorphic functions whileMpC1.�/ is not
meromorphic.

2. It is easily seen that A given by (63) admits a decomposition A D LpC1
jD1 Aj .

Hence A is a symmetric with the de�ciency indices n˙.A/ D PpC1
jD1 n˙.Aj / �

.2p C 1/m. Clearly, the direct sum … D LpC1
jD1 …j D ¹H; �0; �1º of boundary

triplets …j with

H WD
pC1M

jD1
Hj ; �0 WD

pC1M

jD1
�
.j /
0 ; �1 WD

pC1M

jD1
�
.j /
1 ;

where �.j /
k
; k 2 ¹0; 1º, are given by (68) and (71), respectively, forms a boundary

triplet for A�. The corresponding Weyl function is

M.z/ D
pC1M

jD1
Mj .z/ WD �Mp.z/˚MpC1.z/; where �Mp.z/ WD

pM

jD1
Mj .z/:
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Clearly, the Weyl function �Mp.�/ is a meromorphic matrix function in C. Hence its
singularities constitute at most countable set of real-valued poles �p WD ¹!j º1

jD1.
Assume for simplicity that zH D zH� is disjoint with A0 D A� � ker�0. Then in

accordance with Proposition 2.3(iii) there is a bounded operator B such that

zH D A� � ker.�1 � B�0/ D AB ; B 2 B.H/:

Further, let

B D
�
B11 B12
B�
12 B22

�
D B�; B11 2 C

2mp�2mp ; B22 2 C
m�m;

be the block-matrix representation of B with respect to the decomposition

H D zHp ˚ HpC1 where zHp D
pM

jD1
Hj D C

2mp ; HpC1 D C
m:

Then

B �M.z/ D
�
B11 � �Mp.z/ B12

B�
12 B22 �MpC1.z/

�
:

SinceM.�/ is the Weyl function, its imaginary partMI .�/ is positive de�nite in CC,
i.e., MI .z/ � ".z/ > 0 and 0 2 �.MI .z// for z 2 CC. Hence both matrices
Im.M.z/ � B/ D ImM.z/ D MI .z/ and Im. �Mp.z/ � B11/ D Im zMp.z/ are also
positive de�nite for z 2 CC: It follows that both matricesM.z/�B and �Mp.z/�B11
are invertible for z 2 CC: Therefore the inverse matrix .B�M.z//�1 exists for each
z 2 CC and can be computed by the Frobenious formula:

.B �M.z//�1 D
�
K11.z/ K12.z/

K21.z/ M�1
B .z/

�
; z 2 CC;

where

MB.z/ WD B22 �MpC1.z/ � B�
12.B11 � �Mp.z//�1B12; (74)

K11.z/ D .B11 � �Mp.z//�1

C .B11 � �Mp.z//�1B12M�1
B .z/B�

12.B11 � �Mp.z//�1;

K12.z/ D �.B11 � �Mp.z//�1B12M�1
B .z/;

K21.z/ D �M�1
B .z/B�

12.B11 � �Mp.z//�1: (75)
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3. We are going to show that �sc. zH/ \ RC D ;. Since the matrix function
B11 � �Mp.�/ is meromorphic in C and invertible in CC, its determinant

d1.z/ WD det.B11 � �Mp.z//

has at most a countable set of isolated zeros inR n�p . Denoting this null set by�n,
we get

lim
z!��

.B11 � �Mp.z//�1 D .B11 � �Mp.�//�1; � 2 RC n .�p [�n/: (76)

It follows from (74), (76) and Theorem 3.8 (i) that the limit

MB.�C i0/ WD lim
z!��

MB.z/

exists for each � 2 RC n .�p [�n/ and

MB.�C i0/ D B22 �MpC1.�C i0/ � B�
12.B11 � zMp.�//�1B12; (77)

� 2 RC n .�p [ �n/. Since B22 D B�
22, B11 D B�

11, and �Mp.�/ D �Mp.�/� for
every � 2 RC n .�p [�n/, the later identity yields

Im.�MB.�C i0// D Im.MpC1.�C i0//; � 2 RC n .�p [�n/:

Since Im.MpC1.�C i0// is invertible for � 2 RC n .�p[�n/ one gets that the limit
MB.�C i0/ is invertible for each � 2 RC n .�p [�n/ and
MB.�C i0/�1 D .B22 �MpC1.�C i0/ � B�

12.B11 � �Mp.�//�1B12/�1; (78)

� 2 RC n .�p [�n/. Since the limitMB.�C i0/ is invertible we get from (76),(78)
and formulas (74)-(75) that the limit B �M.�C i0/ WD limz!��.B �M.z//

B �M.�C i0/ D
�
B11 � �Mp.�/ B12

B�
12 B22 �MpC1.�C i0/

�
(79)

exist for RC n .�p [�n/ and is invertible. Moreover, we have

.B �M.�C i0//�1 D lim
z!��

.B �M.z//�1

for every � 2 RC n .�p [�n/. One easily checks that…B D ¹H; �B0 ; �B1 º,
�B0 WD �1 � B�0 and �B1 WD ��0

is a boundary triplet forA� andA0 D A� � ker.�B0 / D zH . The corresponding Weyl
functionMB.�/ is given byMB.z/ D .B�M.z//�1, z 2 C˙. Since the set�p[�n
is at most countable, Theorem 2.10(ii) applies and ensures that �sc.AB/ \ RC D ;.
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4. Let us show that �sc. zH/ \ R� D ;. We note that the resolvent difference
. zH � i/�1 � .HQ � i/�1 is a �nite dimensional operator. Further, in accordance
with Theorem 3.8 (iv) we have �sc.HQ/ \ R� D ; where HQ is the Dirichlet real-
ization of the differential expression LQ. To prove �sc. zH/ \ R� D ; it remains to
apply the Weyl theorem on the stability of the continuous spectrum under compact
perturbations.

5. It remains to consider the case of zH not disjoint with A0. In this case we use
Lemma 2.12 of [32]. We leave the details to the reader.

Remark 4.7. Note that a similar result is also valid for Hamiltonians with �nitely
many ı0-interactions since Corollary 4.2 remains true for such extension of the oper-
ator A.

In connection with Theorem 4.6 we note that similar result for point spectrum is
false, i.e., �p. zH/\RC 6D ; in general. For instance, one obtains a counterexample by
setting zH D zH1˚ zH2, where zH1 2 ExtA1

and zH2 2 ExtS1
, where S1 WD LpC1

jD2 Aj .
In other words, as distinct from the Hamiltonians HX;˛;Q other extensions

zH 2 ExtA might have positive eigenvalues.

Theorem 4.8. Let Q D Q� 2 L1.RC;Cm�m/ and let HX;˛;Q be the Hamilto-
nian associated with (64). Then the positive part EHX;˛;Q

.RC/HX;˛;Q of HX;˛;Q
is unitarily equivalent to the positive part EHQ

.RC/HQ of the Dirichlet realization
HQ D HX;0;Q. In particular, the spectrum of EHX;˛;Q

.RC/HX;˛;Q is purely abso-
lutely continuous and of constant spectral multiplicity m.

Moreover, the HamiltonianHX;˛;Q is semi-bounded below and its negative spec-
trum is either �nite or forms a sequence tending to zero.

Proof. By Theorem 4.6 the Hamiltonian HX;˛;Q has no singular continuous non-
negative spectrum, �sc.HX;˛;Q/\RC D ;. On the other hand, Corollary 4.2 implies
absence of (embedded) positive eigenvalues, i.e., �p.HX;˛;Q/ \ RC D ;. Thus,
the non-negative spectrum �.HX;˛;Q/ \ RC of HX;˛;Q is purely absolutely contin-
uous, i.e., EHX;˛;Q

.RC/HX;˛;Q D EHX;˛;Q
.RC/H ac

X;˛;Q. Since the resolvent dif-

ference . zH � i/�1 � .HQ � i/�1 is �nite-dimensional, the unitarily equivalence
of the non-negative parts EHX;˛;Q

.RC/HX;˛;Q and EHQ
.RC/HQ follows from the

Kato–Rosenblum theorem.

Remark 4.9. Assume that Q.�/ decays exponentially, i.e., jQ.x/j < Ce�ax with
some C > 0 and a > 0: Then the matrix functions N1.z2/ andN2.z2/ given by (73)
admit holomorphic continuation from CC into Ca� n ¹0º where

C
a
� WD ¹z D x C iy 2 C;�a < y � 0º:
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Therefore it follows from representation (72)-(73) thatMpC1.z2/ D MQpC1
.z2/ ad-

mits a meromorphic continuation intoCa�n¹0º. In turn, the latter with account of (77)
and (79) ensures a meromorphic continuation of B � M.z2/ into Ca� n ¹0º: Hence,
.B � M.z2//�1 is holomorphic on the non-negative semi-axes RC with a possible
exception of a countable number of real poles �� WD ¹!�

j º1
jD1. This observation

essentially simpli�es the proof of Theorem 4.6.
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Spectral asymptotics for the Dirichlet Laplacian

with a Neumann window

via a Birman–Schwinger analysis

of the Dirichlet-to-Neumann operator

André Hänel and Timo Weidl

Dedicated to Pavel Exner on the occasion of his 70th birthday

1 Introduction

In what follows we consider an in�nite quantum waveguide subject to a perturbation
of the boundary conditions. In spectral theory this type of perturbation is of partic-
ular interest, since it is non-additive and may not be treated with standard methods,
such as the Birman–Schwinger principle. The simplest case arises by considering
the Dirichlet Laplacian on an in�nite strip having a so-called Neumann window. Let
� D R � .0; ˛/. We consider �� on � with Dirichlet boundary on all of @�
except for some small part of the boundary, where we impose Neumann boundary
conditions. We are interested in the behaviour of the discrete eigenvalues below the
essential spectrum Œ�2=˛2;1/ depending on the length of the window, cf. Figure 1.

u D 0 u D 0@nu D 0

2`

��u D �u

u D 0

width=˛

Figure 1. The Dirichlet Laplacian with a Neumann window.

This case was �rst investigated in [11], where the existence of an eigenvalue was
proved by a variational argument. Moreover, a numerical computation given by these
authors suggested that for small windows of size 2` the distance of the eigenvalue



316 A. Hänel and T. Weidl

to the spectral threshold �2=˛2 is of order `4. The �rst analytic proof concerning this
fact was given by Exner and Vugalter in [12]. They proved a two-sided asymptotic
estimate, i.e., for small ` > 0 there exist a unique eigenvalue �.`/ below the essential
spectrum Œ�2=˛2;1/ and constants c1; c2 > 0 such that

c1`
4 � �2

˛2
� �.`/ � c2`

4 as ` ! 0:

In fact in [11] and [12] the authors considered the more general case of two quantum
waveguides which are coupled through a small window, cf. Figure 2.

˛C

˛���u D �u

u D 0

u D 0 u D 0

u D 0

2`

Figure 2. Two laterally coupled quantum waveguides of width ˛C and ˛�.

If both waveguides have the same width ˛C D ˛� D ˛, then we may use the
symmetry with respect to the horizontal direction. In this case the eigenvalue problem
is equivalent to the mixed problem in Figure 1. The proof of the two-sided asymptotic
estimate in [12] is based on a variational argument. The upper bound may easily
be obtained using a suitable test-function and the min-max principle for self-adjoint
operators. However, the more delicate part consists in �nding a uniform lower bound
for the variational coef�cient. In order to prove such an estimate Exner and Vugalter
decomposed an arbitrary test-function, using an expansion in the vertical direction.

Popov [27] re�ned the two-sided estimate and proved that the ground state eigen-
value �.`/ satis�es the following asymptotic behaviour:

�2

˛2
� �.`/ D

8
ˆ̂̂
<
ˆ̂̂
:

� �3
4˛3

�2
`4 C o.`4/; ˛C ¤ ˛�;

� �3
2˛3

�2
`4 C o.`4/; ˛C D ˛�;

as ` ! 0:

His proof is based on a scheme which matches the asymptotic expansions for the
eigenfunctions, cf. [23] and [17]. Popov uses different expansions for the eigenfunc-
tions near the window and distant from the window. Using the explicit formulae for
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the Green’s functions in the upper and lower waveguide he computes the asymp-
totic behaviour of the eigenvalue. Further terms in this expansion have been calcu-
lated in [15]. In [30] the approach was generalised to three-dimensional layers, cf.
also [13] for a two-sided asymptotic estimate. Further extensions include e.g., higher
dimensional cylinders [28] and [18], a �nite or an in�nite number of windows [28],
[29], [5], [6], [7], and [26], the case of three coupled waveguides [16] or magnetic
operators [8]. The case of two retracting distant windows has been investigated in [9]
and [10]. For an overview concerning spectral problems in quantum waveguides we
refer to [14].

We provide a new approach for the symmetric case which uses the explicit rep-
resentation of the Dirichlet–to–Neumann operator. This allows us to reformulate
the singular perturbation of the original operator into an additive perturbation of
the Dirichlet–to–Neumann operator, or merely its truncated part. We replace the
matching scheme for the eigenfunctions in [27] by an asymptotic expansion of the
Dirichlet–to–Neumann operator and a subsequent use of the Birman–Schwinger prin-
ciple. As a particular consequence we will observe that only the principal symbol has
an in�uence on the �rst term of the asymptotic formula. In a similar way we treat the
case of two coupled quantum waveguides. An application of the method to elastic
waveguides may be found in [22].

Structure of the article

We start by treating the two-dimensional case. We consider the Laplacian ��
on � D R � .0; ˛/ with Dirichlet boundary conditions except for some small set
†`�¹0º � @�, where we impose Robin boundary conditions. Here†` WD `�† � R

and† � R is a �nite union of bounded open intervals. Section 2 starts with the de�-
nition of the self-adjoint realisation of the corresponding Laplacian and the introduc-
tion of the Dirichlet–to–Neumann operator and of the Dirichlet–to–Robin operator.
The asymptotic formula for the eigenvalue of the corresponding Laplacian is stated
and proven in Section 2, see Theorems 2.9 and 2.10. Additionally, in Theorems 2.9
and 2.10 we prove the uniqueness of the eigenvalue for small window sizes and in
Theorem 2.16 we treat the case of two quantum waveguides coupled through a small
window.

Section 3 is devoted to three-dimensional layers of the form� D R2 � .0; ˛/. In
this case the Robin window is given by†`�¹0º � @�, where†` WD ` �† � R2 is a
bounded open set with Lipschitz boundary, cf. Figure 3. We follow the same scheme
as in the two-dimensional case and prove in Theorem 3.1 an asymptotic formula for
the ground state eigenvalue as the window length decreases.
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Figure 3. An in�nite layer with a small window.

2 The two-dimensional case

The construction of the Dirichlet–to–Robin operator

Let ˛ > 0 and put � WD R � .0; ˛/ with coordinates .x; y/ 2 �. Let † � R be the
Robin window and assume that † is a bounded open set, which is a �nite union of
open intervals. We denote the scaled window by †` WD ` � †. The Laplacian on �
with Robin boundary conditions on †` � ¹0º and Dirichlet boundary conditions on
the remaining part of the boundary is de�ned by the quadratic form

a`;bŒu� WD
ˆ

�

jru.x; y/j2 dx dy C
ˆ

†`

b.x/ � ju.x; 0/j2 dx;

with the form domain

DŒa`;b� WD ¹u 2 H 1.�/WujR�¹˛º D 0 and supp.ujR�¹0º/ � †`º:

Here b 2 L1.R/ is a real-valued function and ujR�¹0º; ujR�¹˛º 2 H
1=2.R/ are

the boundary traces of the function u 2 H 1.�/. Then a`;b de�nes a closed semi-
bounded form on L2.�/ and gives rise to a self-adjoint operator, which we de-
note by A`;b . The essential spectrum of the operator A`;b is given by �ess.A`;b/ D
Œ�2=˛2;1/. This well-known fact is due to Birman [3], where he gives a proof in the
case of compact boundary @�.

As a �rst step we consider the Dirichlet–to–Neumann operator acting on the lower
part of the boundaryR� ¹0º. For s 2 R letH s.R/ be the standard Sobolev space on
R with the usual norm de�ned via Fourier transform. Let ! 2 C and g 2 H 1=2.R/.
We consider a weak solution u 2 H 1.�/ of the Poisson problem

.�� � !/u D 0 in �; ujR�¹0º D g; ujR�¹˛º D 0: (1)
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Applying the Fourier transform in the horizontal direction, it follows from (1) that
Ou.�; y/ solves

.�@2y C �2 � !/ Ou.�; y/ D 0; Ou.�; 0/ D Og.�/; Ou.�; ˛/ D 0 (2)

with .�; y/ 2 R � .0; ˛/. Conversely, if u 2 H 1.�/ is given such that its Fourier
transform Ou.�; y/ solves the family (2) of Sturm Liouville problems, then u is a weak
solution of the Poisson problem (1). For �xed � 2 Rwith �2 ¤ !, the solution of (2)
is given by

Ou.�; y/ D Og.�/
sinh.˛

p
�2 � !/

� sinh..˛ � y/
p
�2 � !/: (3)

Here and subsequently we choose the branch of the square root function such that
z 7! p

z is holomorphic in Cn.�1; 0� and such that
p
z > 0 for z > 0. Moreover,

we extend the de�nition to z 2 .�1; 0� and assume that Im.
p
z/ � 0 for z � 0.

Actually, the expression for Ou is independent of the value of the square root function
as long as one uses the same in the two terms.

Lemma 2.1. Let ! 2 CnŒ�2=˛2;1/. For every g 2 H
1=2.R/ there exists a unique

u 2 H 1.�/ which solves (1), and moreover kukH1.�/ � ckgk
H1=2.R/

with c D
c.!; ˛/ > 0 independent of g.

For the proof of Lemma 2.1 one has to verify that the function u given by (3)
belongs indeed toH 1.�/ if g 2 H 1=2.R/. We want to omit this simple calculation.

Remark 2.2. If ! � �2=˛2, then in general Ou will have a singularity and the above
mapping property does not hold true. This is to be expected, as in this case ! will be
located in the essential spectrum Œ�2=˛2;1/.

Here and subsequently we assume that ! 2 CnŒ�2=˛2;1/. Let g 2 H 1=2.R/ and
let u be the solution of the Poisson problem (1). Its normal derivative @nu satis�es

b@nu.�; 0/ D m!.�/ Og.�/;

where
m!.�/ WD

p
�2 � ! � coth.˛

p
�2 � !/:

The Dirichlet–to–Neumann operator is de�ned byD! WH 1=2.R/ ! H�1=2.R/,

bD!g.�/ WD Og.�/ �
p
�2 � ! � coth.˛

p
�2 � !/:
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We note that D! is a classical pseudo-differential operator of order 1 with x-inde-
pendent symbolm! . Since the operator A`;b is de�ned by its quadratic form we give
a variational characterisation of the Dirichlet–to–Neumann operator D! . We also
refer to Chapter 4 in McLean [25] for mixed problems formulated in their variational
form.

Lemma 2.3. Let ! 2 CnŒ�2=˛2;1/ and g 2 H
1=2.R/. We denote by u 2 H 1.�/

the solution of the Poisson problem (1). Then for h 2 H�1=2.R/ the following two
assertions are equivalent:

(1) h D D!g;

(2) for all v 2 H 1.�/ with vjR�¹˛º D 0 we have

hru;rvi� D !hu; vi� C hh; vjR�¹0ºiR: (4)

Here h�; �i� and h�; �iR denote the dual pairings with respect to the scalar product in
L2.�/ and L2.R/ identi�ed with L2.R � ¹0º/.

Proof. Let g 2 H 1=2.R/ and u 2 H 1.�/ be chosen as above. From (3) and integra-
tion by parts we obtain

hru;rvi� � !hu; vi� D
ˆ

R

@y Ou.�; 0/ Ov.�; 0/ d�

D
ˆ

R

p
�2 � ! � coth.˛

p
�2 � !/ Og.�/ Ov.�; 0/ d�

D hD!g; vjR�¹0ºiR:

This proves one direction of the equivalence. The converse follows as the trace opera-
tor u 7! ujR�¹0ºWH 1.�/ ! H

1=2.R/ has a continuous right inverse, cf. Lemma 3.36
in [25]. In particular, for every f 2 H

1=2.R/ there exists v 2 H 1.�/ such that
vjR�¹˛º D 0 and vjR�¹0º D f , and thus, D!g is uniquely de�ned by (4).

In order to treat the mixed boundary value problem we introduce for s 2 R the
following function spaces:

zH s
0 .†`/ WD ¹g 2 H s.R/W supp.g/ � †`º; (5)

H s.†`/ WD ¹g 2 .C1
c .†`//

0W there exists G 2 H s.R/ with g D Gj†`
º: (6)
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Here C1
c .†`/ is the space of smooth functions with compact support in †`; we

denote by .C1
c .†`//

0 the space of distributions on †`. We note that zH s
0 .†`/ is a

closed subspace of distributions in R whereasH s.†`/ is a subspace of distributions
in †`. The latter space may be identi�ed with the quotient space

H s.R/= zH s
0.Rn†`/;

where zH s
0.Rn†`/ contains, by de�nition, those distributions in H s.R/ which have

support in Rn†`. We endow the spaces in (5) and (6) with their natural topology,
i.e., zH s

0.†`/ carries the subspace topology of H s.R/ and H s.†`/ has the quotient
topology. For s � 0 we may identify zH s

0 .†`/ with the subspace of L2.†`/ which
consists of those functions whose extension by 0 yields an element of H s.R/. Fur-
thermore, the space zH s

0.†`/ is an isometric realisation of the (anti-)dual ofH�s.†`/
and vice versa. The dual pairing is given by the expression

hg; hi†`
WD hG; hiR; g 2 H�s.†`/; h 2 zH s

0.†`/; (7)

where G 2 H�s.R/ denotes any extension of g, cf. Theorem 3.14 in [25]. Note that
C1
c .†`/ is a dense subset of zH 1=2

0 .†`/, cf. Theorem 3.29 in [25]. In particular the
above expression is independent of the chosen extension G. Thus, the domain of the
quadratic form a`;b may be rewritten as

DŒa`;b� D ¹u 2 H 1.�/WujR�¹˛º D 0 and ujR�¹0º 2 zH 1=2
0 .†`/º:

We de�ne the truncated Dirichlet–to–Neumann operator

D`;! W zH 1=2
0 .†`/ �! H�1=2.†`/; D`;! WD r`D!e`;

where
r`WH�1=2.R/ �! H�1=2.†`/

is the restriction operator and

e`W zH 1=2
0 .†`/ �! H

1=2.R/

is the embedding. Identifying zH 1=2
0 .†`/ with a subspace of L2.†`/, the operator

e` is simply extension by 0. Considering the corresponding topologies one eas-
ily observes that D`;! is a bounded linear operator. Recalling that b 2 L1.R/,
we de�ne the truncated Dirichlet–to–Robin operator by

D`;! C bW zH 1=2
0 .†`/ �! H�1=2.†`/; D`;! C b WD r`.D! C b/e`;

where we identify b with the corresponding multiplication operator. The next lemma
gives a characterisation of the eigenvalues ofA`;b in terms of the truncated Dirichlet–
to–Robin operator.
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Lemma 2.4. Let ! 2 CnŒ�2=˛2;1/ and ` > 0. Then

dim ker.A`;b � !/ D dim ker.D`;! C b/:

Proof. The assertion follows if we prove that the trace mapping is an isomorphism of
ker.A`;b�!/ onto ker.D`;!Cb/. Let us �rst prove that it indeed maps ker.A`;b�!/
into ker.D`;! C b/. Let u 2 ker.A`;b � !/ and denote g WD ujR�¹0º 2 zH 1=2

0 .†`/

its boundary trace. Let h 2 zH 1=2
0 .†`/ be an arbitrary test function and choose

v 2 DŒa`;b�, such that vjR�¹0º D h. The dual pairing (7) and Lemma 2.3 imply

h.D`;! C b/g; hi†`
D hD!g C bg; hiR
D hru;rvi� C hbg; hiR � !hu; vi�
D a`;bŒu; v�� !hu; vi�
D 0;

as D!g 2 H
1=2.R/ is obviously an extension of D`;!g 2 H

1=2.†`/ and u is an
eigenfunction for the eigenvalue !. Hence, g 2 ker.D`;! C b/, which proves that
the mapping

ker.A`;b � !/ 3 u 7�! ujR�¹0º 2 ker.D`;! C b/

is well de�ned. Moreover, Lemma 2.1 implies that this mapping is injective. It re-
mains to prove surjectivity. Let g 2 ker.D`;! C b/ and denote by u 2 H 1.�/

the unique solution of the Poisson problem (1). Then u 2 DŒa`;b� and for arbitrary
v 2 DŒa`;b� we have

a`;b Œu; v� D hru;rvi� C hbg; vjR�¹0ºiR
D !hu; vi� C hD!g C bg; vjR�¹0ºiR
D !hu; vi� C h.D`;! C b/g; vjR�¹0ºi†`

D !hu; vi�:

Thus, u 2 D.A`;b/ and .A`;b � !/u D 0. This proves the assertion.

A particular consequence of Lemma 2.4 is the observation that the Dirichlet–to–
Robin operator D`;! C b has non-trivial kernel if and only if ! is an eigenvalue of

A`;b . Put V WD zH 1=2
0 .†`/ and consider the Gelfand triple

V �! L2.†`/ �! V �:
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We identify V with a subspace of L2.†`/ and V � D H�1=2.†`/ is the space of
antilinear functionals on zH 1=2

0 .†`/, cf. the dual pairing (7). The truncated Dirichlet–
to–Robin operator D`;! maps

D`;! C bWV �! V �;

and thus, it is completely described by the sesquilinear form

.d`;! C b/Œg; h� WD h.D`;! C b/g; hiV �;V D hD`;!g; hi†`
C hbg; hi†`

where g; h 2 DŒd`;! � WD zH 1=2
0 .†`/. Using the dual pairing (7) we obtain

d`;! Œg; h� D hD!g; hiR D
ˆ

R

p
�2 � ! coth.˛

p
�2 � !/ � Og.�/ Oh.�/ d� (8)

and

bŒg; h� D
ˆ

†`

b.x/ � g.x/ h.x/ dx: (9)

We note that (8) is independent of ` and the dependence of ` in (9) is manifested in
the domain of integration. In particular we may consider the dependence on ` as a
constraint on the support of the functions g and h.

Lemma 2.5. Let ! 2 CnŒ�2=˛2;1/. Then d`;! de�nes a closed sectorial form in
L2.†`/. The associated m-sectorial operator is the restriction of D`;! C b to the
operator domain

X`;! WD ¹g 2 zH 1=2
0 .†`/WD`;!g 2 L2.†`/º:

Proof. Combining formulae (8) and (9) we have for g; h 2 zH 1=2
0 .†`/

.d`;! C b/Œg; h� D
ˆ

R

m!.�/ � Og.�/ Oh.�/ d� C
ˆ

†`

b.x/ � g.x/ h.x/ dx

with m!.�/ D
p
�2 � ! coth.˛

p
�2 � !/. Note that

m!.�/ D
p
�2 � ! coth.˛

p
�2 � !/ D j�j CO.1/ as � ! ˙1:

As zH 1=2
0 .†`/ carries the subspace topology induced byH 1=2.R/ this implies

c�1
1 kgk2zH1=2

0 .†`/
� Re.d`;! C b/Œg�C c2kgk2L2.†`/

� c1kgk2zH1=2
0 .†`/

; (10)
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for constants ci D ci .!; ˛;†`/ 2 R, i D 1; 2. Thus, the form d`;! is bounded from
below and closed. Moreover, it easily follows that d`;! C b is sectorial. To prove the
second assertion let g 2 X`;! such that D`;!g D Qf 2 L2.†`/. Then,

.d`;! C b/Œg; h� D hD`;!g; hi†`
C hbg; hi†`

D h Qf C bg; hi†`

for all h 2 C1
c .†`/. As C1

c .†`/ is dense in zH 1=2
0 .†`/ the above equality holds

true for every h 2 zH 1=2
0 .†`/. Thus, g lies in the operator domain of the m-sectorial

realisation which acts asD`;! C b. In the same way it follows that the domain of the
m-sectorial realisation is contained in X`;! .

Since
ker.D`;! C b/ � X`;! ;

we can apply Hilbert space methods to determine whether zero is an eigenvalue of
D`;! C b or not. The spectrum of the m-sectorial realisation consists of a discrete

set of eigenvalues only accumulating at in�nity, since DŒd`;! C b� D zH 1=2
0 .†`/

is compactly embedded into L2.†`/, cf. Theorem 3.27 in [25]. Moreover, for real
! 2 RnŒ�2=˛2;1/ the quadratic form d`;!Cb is symmetric, and thus, the associated
operator is self-adjoint.

Remark 2.6. The close relation between self-adjoint extensions of differential op-
erators and self-adjoint operators acting on the boundary has been pointed out in the
case of bounded domains by G. Grubb, in particular with regard to resolvent formu-
lae, cf. [21] and the references therein.

Another consequence of Lemma 2.5 or merely its proof is the following lemma.

Lemma 2.7. The (original) operatorD`;! CbW zH 1=2
0 .†`/ ! H�1=2.†`/ is an Fred-

holm operator with zero index.

The proof follows by combining formula (10) and Theorems 2.34 and 3.27 in [25].
As the m-sectorial realisation of the Dirichlet–to–Robin operator is simply the

restriction of the original operator we do not want to introduce a separate notation
for it. In fact, we will mainly work with a quadratic form, which arises after scaling
the Robin window. Recall that †` WD ` �†. We de�ne the unitary scaling operator

T`WL2.†/ �! L2.†`/; .T`g/.x/ D `�1=2g
�x
`

�
:

Note that the operator T` bijectively maps zH 1=2
0 .†/ into zH 1=2

0 .†`/. Set

Qb.`; !/W zH 1=2
0 .†/ �! H�1=2.†/; Qb.`; !/ WD T �

` .D`;! C b/T`
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and let

qb.`; !/Œg; h� WD .d`;! C b/ŒT`g; T`h�

be the associated sesquilinear form with DŒqb.`; !/� WD zH 1=2
0 .†/. Then

dim ker.A`;b � !/ D dim ker.D`;! C b/ D dim ker.Qb.`; !//:

Next we prove an asymptotic expansion of the operator Qb.`; !/ as ` ! 0 and
! ! �2=˛2. This expansion represents the principal tool of the proof of the main
result. Here and subsequently we denote by Q0W zH 1=2

0 .†/ ! H�1=2.†/,

hQ0g; hi† WD q0Œg; h� WD
ˆ

R

j�j � Og.�/ Oh.�/ d�

the Dirichlet–to–Neumann operator for the mixed problem on the upper half-space or
equivalently on the lower half-space corresponding to the spectral parameter ! D 0.
Note that Q0W zH 1=2

0 .†/ ! H�1=2.†/ is also a Fredholm operator with Fredholm
index 0, which follows from Theorem 2.34 in [25]. The identity Q0g D 0 implies

0 D hQ0g; gi† D
ˆ

R

j�j � j Og.�/j2 d�;

and thus, g D 0. Hence Q0 has trivial kernel and it is invertible.
In what follows we denote by Pct the projection in L2.†/ onto the subspace of

constant functions and let Kln jxjWL2.†/ ! L2.†/,

.Kln jxjf /.z/ D
ˆ

†

ln jz � xj � f .x/ dx; x 2 †:

Theorem 2.8. Let b D 0. There exist `0 D `0.˛; †/ > 0 and " D ".˛;†/ > 0 such
that for ` 2 .0; `0/ and j! � �2=˛2j < " the asymptotic expansion holds true

Q0.`; !/ D 1

`
Q0 � ` �

� j†j � �2
˛3

��r�2

˛2
� !

��1
Pct

C
1X

k1D1

1X

k2D0
`2k1�1

�r
�2

˛2
� !

�k2

.B
.0/

k1;k2
C B

.1/

k1;k2
� ln `/:

Here B.i/
k1;k2

2 L.L2.†// for i D 1; 2. The series converges absolutely in the oper-
ator norm of L.L2.†//. For the �rst terms we obtain

B
.0/
1;0 D j†j � �.˛/

2�
Pct C �

2˛2
Kln jxj; B

.1/
1;0 D j†j � �

2˛2
Pct; B

.0/
1;1 D B

.1/
1;1 D 0;

where the constant �.˛/ 2 R is given by formula (15) and j†j is the Lebesgue mea-
sure of †.

The next section is devoted to the proof of Theorem 2.8.
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The proof of Theorem 2.8

For g; h 2 zH 1=2
0 .†/ we have

hQ0.`; !/g; hi† D q0.`; !/Œg; h� D `

ˆ

R

m!.�/ � Og.`�/ h.`�/ d�;

wherem!.�/ D
p
�2 � ! �coth.˛

p
�2 � !/. The main idea of the proof is to use the

asymptotic expansion of the function m!.�/ for � D 0 and � ! ˙1 while letting
the parameter ! ! �2=˛2.

As a �rst step of the proof we show that m! has a meromorphic extension to the
complex plane and calculate explicitly its singularities and residues. To this end we
use the partial fraction decomposition of the hyperbolic cotangent function, i.e., we
have

coth.z/ D 1

z
C

1X

kD1

2z

z2 C k2�2
; z 2 Cn¹ik� W k 2 Zº;

cf., e.g., [24] (Chapter V, §1.71). Hence,

m!.�/ D 1

˛
C

1X

kD1

2˛.�2 � !/
˛2.�2 � !/C k2�2

; � 2 R; (11)

and thus, the mermorphic extension of m! is given by the above series. For ! 2
CnŒ�2=˛2; 1/ the singularities of m! are all simple poles which are located at

˙i

r
k2�2

˛2
� !; k 2 N:

In particular they do not lie on the real axis. As ! ! �2=˛2 the two poles nearest
the real axis converge to 0 2 C and they give rise to a pole of order two in the limit
case. Here and subsequently we �x ˇ D ˇ.˛/ 2 .�=˛;

p
3 �=˛/. Then there exists

" D ".˛/ > 0 such that for ! 2 CnŒ�2=˛2;1/, j! � �2=˛2j < " the function m! has
exactly two poles inside the strip R C iŒ�ˇ; ˇ�. The residues of the function m! at
these points are given by

Res
�D˙i

p
�2=˛2�! m!.�/ D ˙�2

˛3
� ir

�2

˛2
� !

(12)

as can easily be seen from the expansion (11).
Let g; h 2 zH 1=2

0 .†/. Since g; h are compactly supported their Fourier transforms
Og; Oh admit holomorphic extensions on the whole complex plane. Note that the func-
tion Oh�,

Oh�.�/ WD Oh. N�/; � 2 C;
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is also an entire function on C. We decompose the form q0.`; !/ as follows

q0.`; !/Œg; h� D `

�
ˆ

Œ�1;1�
C
ˆ

Œ�1;1�c

�
m!.�/ � Og.`�/ Oh�.`�/ d�; (13)

where we put Œ�1; 1�c D RnŒ�1; 1�. Using the Taylor expansion of the function Og � Oh�
at 0 2 C, we obtain for the �rst integral

ˆ

Œ�1;1�
m!.�/ � Og.`�/ Oh�.`�/ d� D

1X

kD0
`kek Œg; h�

ˆ

Œ�1;1�
�km!.�/ d�

with

ekŒg; h� D 1

kŠ
� dk

d�k
. Og.�/ Oh�.�//

ˇ̌
ˇ
�D0

D 1

kŠ
�
kX

jD0

�
k

j

�
Og.j /.0/ � Oh.k�j /.0/:

We note that m! is an even function, and thus, in the expansion the terms of odd
order vanish. Let Ek be the operator associated with the form ek . Then
ˆ

Œ�1;1�
m!.�/ � Og.`�/ Oh�.`�/ d� D

1X

kD0
`2khE2kg; hi†

ˆ

Œ�1;1�
�2km!.�/ d�:

Note that

j Og.j /.0/j � 1p
2�

�
ˆ

†

jxj2j
�1=2

kgkL2.†/ � C jkgkL2.†/

for suf�ciently large C D C.†/ > 0, which implies

kEkkL.L2.†// � .2C /k

kŠ
:

To estimate the integral
´

Œ�1;1� �
2km!.�/ d� we denote by  the path depicted in

Figure 4 connecting the points�1 and 1. Its image im./ coincides with the boundary
of the following rectangle except for the line segment Œ�1; 1�.

�1 1


iˇ

i
p
�2=˛2 � !

i
p
4�2=˛2 � !

Figure 4. The path  .
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Note that Im.i
p
�2=˛2 � !/ > 0 if ! 2 CnŒ�2=˛2;1/. Using formula (12) the

residue theorem implies
ˆ

Œ�1;1�
�2km!.�/ d� D � .�1/

k � 2�3
˛3

��2
˛2

� !
�.k�1/=2

C
ˆ



�2km!.�/ d�:

Next we use for �xed � 2 im./ the Taylor expansion ofm!.�/ at ! D �2=˛2. Thus,
there exists " > 0 such that for j! � �2=˛2j < " we have

m!.�/ D
1X

jD0

.�1/j
��2
˛2

� !
�j

j Š

dj

d!j
m!.�/

ˇ̌
ˇ
!D�2=˛2

:

This expression may be considered as a power series in ! with values in L1.im.//,
and we obtain

ˆ



�2km!.�/ d� D
1X

jD0

.�1/j
��2
˛2

� !
�j

j Š

�
ˆ



�2k
dj

d!j
m!.�/ d�

�

!D�2=˛2

:

Finally,

`

ˆ

Œ�1;1�
m!.�/ � Og.`�/ Oh�.`�/ d�

D �`
�2�3
˛3

��r�2

˛2
� !

��1
hE0g; hi†

�
�2�3
˛3

�
�

1X

kD1
`2kC1 � .�1/k �

��2
˛2

� !
�.k�1/=2

� hE2kg; hi†

C
1X

kD0

1X

jD0
`2kC1hE2kg; hi†

.�1/j
��2
˛2

� !
�j

j Š

�
ˆ



�2k
dj

d!j
m!.�/ d�

�

!D�2=˛2

:

We note that the two series
1X

kD1
`2kC1E2k � .�1/k �

��2
˛2

� !
�.k�1/=2

and

1X

kD0

1X

jD0
`2kC1E2k

.�1/j
��2
˛2

� !
�j

j Š

�
ˆ



�2k
dj

d!j
m!.�/ d�

�

!D�2=˛2
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converge absolutely in the operator norm in L.L2.†//, uniformly in ` 2 Œ0; 1� and
j! � �2=˛2j < ". For the �rst series this is obvious. Considering the second series
leads us to the estimate

1X

kD0
`2kC1kE2kkL.L2.†//

1X

jD0

ˇ̌
ˇ̌�

2

˛2
� !

ˇ̌
ˇ̌
j

j Š

ˇ̌
ˇ̌
ˆ



�2k
dj

d!j
m�2=˛2.�/ d�

ˇ̌
ˇ̌

�
� 1X

kD0
`2kC1 � c2k1 � .2C /

2k

.2k/Š

�� 1X

jD0

"j

j Š

 dj

d!j
m�2=˛2


L1.im.//

�
< 1

for ` > 0 and j! � �2=˛2j < ". Here c1 WD sup¹j�jW � 2 im./º. Calculating the �rst
terms of the expansion we obtain

`

ˆ

Œ�1;1�
m!.�/ � Og.`�/ Oh�.`�/ d�

D �` � 2�
3. Og Oh�/.0/

˛3

r
�2

˛2
� !

C ` � . Og Oh�/.0/
ˆ



m�2=˛2.�/ d� C O

�
`3 C �2

˛2
� !

�
:

Let Pct be the projection in L2.†/ onto the subspace of constant functions. Then

� Og Oh��.0/ D 1

2�

�
ˆ

†

g.x/ dx

��
ˆ

†

h.x/ dx

�
D j†j
2�

hPctg; hi†;

and thus,

`

ˆ

Œ�1;1�
m!.�/ � Og.`�/ Oh�.`�/ d�

D `

�
� j†j � �2

˛3

r
�2

˛2
� !

C j†j � �0;1.˛/
2�

�
hPctg; hi† C O

�
`3 C �2

˛2
� !

�
;

with �0;1.˛/ D ´
ı
m�2=˛2.�/ d�. In order to treat the second integral in (13) we use

the asymptotic expansion of m!.�/ for � ! ˙1. For ease of notation we suppose
that ˛ > � , so that Œ�1; 1� � .��=˛; �=˛/. We have

`

ˆ

Œ�1;1�c
m!.�/ � Og.`�/ Oh�.`�/ d�

D `

ˆ

R

j�j � Og.`�/ Oh�.`�/ d� C `

3X

iD1

ˆ

R

m!;i .�/ � Og.`�/ Oh�.`�/ d�;
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where

m!;1.�/ WD �1Œ�1;1�.�/ � j�j;

m!;2.�/ WD 1Œ�1;1�c .�/ � .
p
�2 � ! � j�j/;

m!;3.�/ WD 1Œ�1;1�c .�/
p
�2 � !.coth.˛

p
�2 � !/ � 1/:

Here 1E denotes the indicator function of a Borel set E � R. We note that the �rst
term

´

R
m!;1.�/ � Og.`�/ Oh�.`�/ d� is independent of ! and may be expanded as

before into a power series with respect to the parameter `; we have

`

ˆ

R

m!;1.�/ � Og.`�/ Oh�.`�/ d� D `

ˆ

Œ�1;1�
j�j � Og.`�/ Oh�.`�/ d�

D `j†j
2�

hPctg; hi† �
ˆ

Œ�1;1�
j�j d� C O.`3/

D `j†j
2�

hPctg; hi C O.`3/:

To treat the second integral we use for � 2 R and j! � �2=˛2j < " the following
expansion

m!;2.�/ D 1Œ�1;1�c .�/.
p
�2 � ! � j�j/ D 1Œ�1;1�c .�/ �

�
j�j �

r
1 � !

�2
� j�j

�

D
1X

kD1

�
1=2

k

�
.�!/k � j�j�2kC1

1Œ�1;1�c .�/:

(14)

This series may be considered as power series in ! with values in L1.R�/. Let
Yk ; Zk 2 C1.Rn¹0º/\ L1;loc.R/ such that

yYk.�/ D 1p
2�

� j�j�2kC1
1Œ�1;1�c .�/ and yZk.�/ D 1p

2�
f.p..j�j�2kC1/:

Here
f.p..j�j�2kC1/ D f.p..��2kC1

C /C f.p..��2kC1
� /

designates the distribution which is de�ned by the �nite part of the singular function
j�j�2kC1, cf. Chapter 5 in [25]. We note that Xk WD Yk � Zk is analytic, since its
Fourier transform yXk D yYk � yZk has compact support. This allows us to determine
the order of the singularity of Yk at 0 2 R. Using Lemma 5.10 in [25] we have

Zk.x/ D 1

�
� .�1/

kx2k�2

.2k � 2/Š .ln jxj C 0 �H2k�2/;
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where 0 is the Euler–Mascheroni constant andH2k�2 D P2k�2
jD1 1=j . We have

`

ˆ

R

m!;2.�/ � Og.`�/ Oh�.`�/ d�

D
1X

kD1

�
1=2

k

�
.�!/k � ` �

ˆ

R

OYk.�/ � Og.`�/ Oh�.`�/ d�

D
1X

kD1

�
1=2

k

�
.�!/k � hYk � T`g; T`hi†`

;

and

hYk � T`g; T`hi†`
D `

ˆ

†�†
.Xk CZk/.`jz � xj/ g.x/ h.z/ dx dz:

De�ning the operators Kjxj2k�2; Kjxj2k�2 ln jxjWL2.†/ ! L2.†/,

.Kjxj2k�2f /.z/ D
ˆ

†

jz � xj2k�2f .x/ dx; z 2 †

.Kjxj2k�2 ln jxjf /.z/ D
ˆ

†

jz � xj2k�2 ln jz � xj f .x/ dx; z 2 †

we obtain

`

ˆ

†�†
Zk.`jz � xj/ g.x/ h.z/ dx dz

D .�1/k `2k�1

� � .2k � 2/Š
ˆ

†�†
jz � xj2k�2 ln.`jz � xj/ g.x/ h.z/ dx dz

C .�1/k `2k�1

� � .2k � 2/Š
� .0 �H2k�2/

ˆ

†�†
jz � xj2k�2 g.x/ h.z/ dx dz

D .�1/k `2k�1

� � .2k � 2/Š .ln `C 0 �H2k�2/hKjxj2k�2g; hi†

C .�1/k `2k�1

� � .2k � 2/Š
hKjxj2k�2 ln jxjg; hi†:

Note that

`

ˆ

†�†
Xk.`jz � xj/ g.x/ h.z/ dx dz D

1X

jD0

X
.2j /

k
.0/ � `2jC1

.2j /Š
hKjxj2j g; hi†;
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which follows by expanding the even function Xk into a power series. For the coef-
�cients X .2j /

k
.0/ we obtain from the de�nition of the �nite part

2�X
.2j /

k
.0/ D 2

ˆ 1

0

.i�/2j . yYk � yZk/.�/ d�

D �2.�1/j f.p."!0

ˆ 1

"

�2j � ��2kC1 d�

D .�1/jC1 �

8
<̂

:̂

1

j � k C 1
if j � k C 1 ¤ 0;

0 if j � k C 1 D 0:

Finally, we have

`

ˆ

R

m!;2.�/ � Og.`�/ Oh�.`�/ d�

D
1X

kD1

�
1=2

k

�
!k � `2k�1

�.2k � 2/Š

h
.ln `C 0 �H2k�2/hKjxj2k�2g; hi†

C hKjxj2k�2 ln jxjg; hi†
i

C
1X

kD1

1X

jD0

�
1=2

k

�
� .�!/k � X

.2j /

k
.0/ � `2jC1

.2j /Š
hKjxj2j g; hi†:

Note that both series,

1

�

1X

kD1

�
1=2

k

�
� !k � `2k�1

.2k � 2/Š
Œ.ln `C 0 �H2k�2/Kjxj2k�2 CKjxj2k�2 ln jxj�

and
1X

kD1

1X

jD0

�
1=2

k

�
.�!/k � X

.2j /

k
.0/ � `2jC1

.2j /Š
Kjxj2j ;

converge uniformly in the operator norm for ` 2 .0; `0/ and j! � �2=˛2j < ". This
follows from the estimates on the coef�cients X2j

k
.0/ and from

kKjxj2k�2kL.L2.†// � C 2k�2; kKjxj2k�2 ln jxjkL.L2.†// � C 2k�2

for suf�ciently large C D C.†/ > 0. Note that ! < 1 since we assumed that
�2=˛2 < 1. Changing the centre of the power series in ! and calculating the �rst
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terms give us the following asymptotic estimate

`

ˆ

R

m!;2.�/ � Og.`�/ Oh�.`�/ d�

D ` ln ` � j†j � �
2˛2

hPctg; hi† C ` � j†j �
�� � 0
2˛2

C �0;2.˛/

2�

�
hPctg; hi†

C ` � �

2˛2
hKln jxjg; hi† C O

�
`3 ln `C �2

˛2
� !

�
;

where

�0;2.˛/ WD �

1X

kD1

�
1=2

k

��
� �2

˛2

�k
Xk.0/ D 1

2

1X

kD2

�
1=2

k

��
� �2

˛2

�k 1

k � 1:

We note that Kjxj0 D j†j � Pct. Thus, the only point remaining is the expansion of

the integral `2
´

R
m!;3.�/ � Og.`�/ Oh�.`�/ d�. We have

m!;3.�/ D 1Œ�1;1�c .�/
p
�2 � !.coth.˛

p
�2 � !/ � 1/:

It easily follows that the function

! 7! eıj�jm!;3.�/ 2 L1.R�/

is a vector-valued holomorphic function for j! � �2=˛2j < " and some ı > 0. In
particular, we obtain that

m!;3.�/ D
1X

kD0

.�1/k
��2
˛2

� !
�k

kŠ

dk

d!k
m!;3.�/

ˇ̌
ˇ
!D�2=˛2

and the series converges absolutely as a power series in ! with values in some expo-
nentially weighted L1-space. Choose zXk 2 C1.R/ such that

czXk.�/ D 1p
2�

� dk

d!k
m!;3.�/

ˇ̌
ˇ
!D�2=˛2

:

Then zX is an even function and analytic in some neighbourhood of 0,

zXk.x/ D
1X

jD0

zX .2j /
k

.0/

.2j /Š
x2j ;

where

zX .2j /
k

.0/ D 1

2�

ˆ

R

.i�/2j
dk

d!k
m�2=˛2;3.�/ d�:
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Note that

j zX .2j /
k

.0/j � 1

2�

eıj�j dk

d!k
m�2=˛2;3

.�/


L1.R� /

2

ˆ 1

0

�2j e�ı� d�

D ı�1�2j .2j /Š
�

eıj�j dk

d!k
m�2=˛2;3

.�/


L1.R� /

;

since
ˆ 1

0

�2j e�ı� d� D ı�1�2j .2j /Š;

cf. (2.321) in [20]. In particular, we obtain

`

ˆ

R

m!;3.�/ � Og.`�/ Oh�.`�/ d�

D
1X

kD0

.�1/k
��2
˛2

� !
�k

kŠ
h zXk � T`g; T`hi†`

D
1X

kD0

1X

jD0

.�1/k
��2
˛2

� !
�k

kŠ

zX .2j /
k

.0/

.2j /Š
� `2jC1 � hKjxj2j g; hi†:

Note that the estimates on the coef�cients zX .2j /
k

.0/ imply that the series

1X

kD0

1X

jD0

.�1/k
��2
˛2

� !
�k

kŠ

zX .2j /
k

.0/

.2j /Š
� `2jC1 �Kjxj2j ;

converges inL.L2.†//, uniformly in ` 2 Œ0; `0� and in j!��2=˛2j < ". In particular,
we obtain

`

ˆ

R

m!;3.�/ � Og.`�/ Oh�.`�/ d�

D ` � j†j � hPctg; hi†
2�

ˆ

R

m�2=˛2;3
.�/ d� C O

�
`3 C �2

˛2
� !

�

D ` � j†j � �0;3.˛/
2�

hPctg; hi† C O

�
`3 C �2

˛2
� !

�
;

where �0;3.˛/ D ´
R
m�2=˛2;3

.�/ d�. Putting

�0.˛/ D �0;1.˛/C �0;2.˛/C �0;3.˛/C 1C 0�
2

˛2
; (15)
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with

�0;1.˛/ D
ˆ

ı

m�2=˛2.�/ d�;

�0;2.˛/ D 1

2

1X

kD2

�
1=2

k

��
� �2

˛2

�k 1

k � 1;

�0;3.˛/ D
ˆ

R

m�2=˛2;3
.�/ d�:

proves Theorem 2.8.

The asymptotic behaviour of the ground state eigenvalue of A`;b

Recall that b 2 L1.R/ and †` D ` � † � R, where † � R is a �nite union of
bounded intervals. The following theorems provide the asymptotic behaviour of the
ground state eigenvalue as the window length decreases.

Theorem 2.9. There exists `0 D `0.˛; b; †/ > 0 such that for all ` 2 .0; `0/ the
operator A`;b has a unique eigenvalue �.`/ below its essential spectrum. It satis�es

q
�2=˛2 � �.`/ D `2

��2
˛3

�
� �0.†/C O.`3/ as ` ! 0:

The constant �0.†/ > 0 is given by (19). If b is continuously differentiable in some
neighbourhood of 0, then the next term of the asymptotic formula is given by

`3
�b.0/ � �1.†/ � �2

˛3

�

up to an error of order O.`4 � ln `/. The constant �1.†/ > 0 is given by (20).

For the special case † D .�1; 1/ we obtain:

Theorem 2.10. Let †` D .�`; `/ and let b be twice differentiable in some neigh-
bourhood of 0. Then the eigenvalue �.`/ satis�es

q
�2=˛2 � �.`/ D `2

� �3
2˛3

�
C `3

�4b.0/�2
3˛3

�
� `4 ln `

� �5
8˛5

�

C `4
��0.˛/�3

8˛3
C �5

32˛5
.1C ln 16/ � b.0/2 � �1 � �2

˛3

�

C O.`5 ln `/

as ` ! 0. The constant �1 > 0 is given by (21).
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First we prove the existence and the uniqueness of the eigenvalue of the operator
A`;b for small ` > 0. To this end we use the asymptotic expansion in Theorem 2.8
in its weaker form

Qb.`; !/ D 1

`
Q0 � ` �

� j†j � �2
˛3

��r�2

˛2
� !

��1
Pct CRb.`; !/ (16)

with the following estimate on the remainder:

sup¹kRb.`; !/kL.L2.†//W ` 2 .0; `0/ and j! � �2=˛2j < "º < 1: (17)

We note that jhbT`g; T`hi†`
j � `kbkL1.†/kgkL2.†/khkL2.†/.

Remark 2.11. Using a similar argumentation as in Theorem 2.8 it follows that for
every compact set K � CnŒ�2=˛2;1/ there exists `0 D `0.˛; b; †;K/ such that

Qb.`; !/ D 1

`
Q0 C zRb.`; !/;

and the remainder satis�es

sup¹k zRb.`; !/kL.L2.†//W! 2 K and ` 2 .0; `0/º < 1:

Recalling that the operator Q0 is a invertible, we obtain

`Qb.`; !/ D Q0.I C `Q�1
0

zRb.`; !//:

Choosing ` > 0 suf�ciently small implies that Qb.`; !/ is invertible for all ! 2 K

and ` 2 .0; `0/. In particular, 0 cannot be an eigenvalue of Qb.`; !/. As a conse-
quence the discrete eigenvalues of the operator A`;b converge to �

2=˛2 as ` ! 0.

In what followswe consider for real! not only the kernel of the operatorQb.`; !/,
but more generally the discrete eigenvalues of the self-adjoint realisation ofQb.`; !/.
For ` > 0 and ! 2 RnŒ�2=˛2;1/ we denote

�1.`; !/ � �2.`; !/ � � � �

these eigenvalues counted with multiplicities.
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Lemma 2.12. Let `0 > 0 and " > 0 be chosen as in Theorem 2.8. Then the following
assertions hold true:

(1) for �xed ` > 0 the function �1.`; �/ is strictly decreasing in .�1; �2=˛2/;

(2) for �xed ` 2 .0; `0/ we have �1.`; !/ ! �1 as ! ! �2=˛2;

(3) for �xed ! 2 .�2=˛2 � "; �2=˛2/ we have �1.`; !/ ! 1 as ` ! 0;

(4) there exists Q̀
0D Q̀

0.˛; †/ such that for all Q̀ 2 .0; `0/ and for all j! � �2=˛2j<"
we have �2.`; !/ > 0.

Proof. We note that for �xed � 2 R the function m!.�/ is strictly decreasing in ! as
can easily be seen from

m!.�/ D 1

˛
C

1X

kD1

2˛.�2 � !/
˛2.�2 � !/C k2�2

D 1

˛
C

1X

kD1

2˛

˛2 C k2�2

�2 � !

:

Thus, for �1 < !1 < !2 < �2=˛2 and g 2 zH 1=2
0 .†/n¹0º we have

qb.`; !1/Œg� > qb.`; !2/Œg�:

Then assertion (1) follows by applying the min-max principle for self-adjoint opera-
tors. Let us now prove assertion (2). Decomposition (16) and the min-max principle
for self-adjoint operators yield for ` 2 .0; `0/ and j! � �2=˛2j < " that �1.`; !/ �
qb.`; !/Œg0� for any g0 2 zH 1=2

0 .†/ with kg0kL2.†/ D 1. Choosing g0 such that
hPctg0; g0i† ¤ 0 we obtain

�1.`; !/ � 1

`
hQ0g0; g0i† � ` �

� j†j � �2
˛3

��r�2

˛2
� !

��1
� hPctg0; g0i† C C1;

which tends to �1 as ! ! �2=˛2. Here C1 WD sup¹kRb.`; !/kL.L2.†//W ` 2
.0; `0/ and j! � �2=˛2j < "º. This proves (2). To deduce (3) we recall that Q0 is
invertible and we have q0Œg� D hQ0g; gi† � 0 for all g 2 zH 1=2

0 .†/. Thus, there
exists �� > 0 such that

hQ0g; gi† D q0Œg� � ��kgk2L2.†/
; g 2 zH 1=2

0 .†/:
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We note that the spectrum of the self-adjoint realisation of Q0 is discrete since the
form domain of q0 is compactly embedded in L2.†/. Thus, for ! 2 RnŒ�2=˛2;1/

with j! � �2=˛2j < " we have

�1.`; !/ D inf¹qb.`; !/Œg�W g 2 zH 1=2
0 .†/ and kgkL2.†/ D 1º � ��

`
� C1 �! 1

as ` ! 0. This proves (3). Assertion (4) follows if we prove that the form qb.`; !/

is positive on a subset of codimension 1. Choose g 2 zH 1=2
0 .†/, kgkL2.†/ D 1,

orthogonal to the constant functions. Then

qb.`; !/Œg� D 1

`
q0Œg�C hRb.`; !/g; gi† � ��

`
� C1 > 0

for 0 < ` < Q̀
0 WD min¹1; ��=C1º and j! � �2=˛2j < ". This concludes the proof of

Lemma 2.12.

Lemma 2.13. There exists `0 D `0.˛; b; †/ > 0 such that for all ` 2 .0; `0/ the
operator A`;b has a unique eigenvalue �.`/ below its essential spectrum.

Proof. We start by proving the uniqueness of the eigenvalue. Let " > 0 be chosen
as in Theorem 2.8 and Lemma 2.12. Using the remark before Lemma 2.12 we may
choose `0 > 0 such that inf �.A`;b/ � �2=˛2 � " for all ` 2 .0; `0/. Moreover,
we assume that �2.`; !/ > 0 for all ` 2 .0; `0/ and ! 2 .�2=˛2 � "; �2=˛2/. Fix
` 2 .0; `0/ and assume that ! 2 �d .A`;b/. Then �1.`; !/ D 0. Lemma 2.12 (1)
implies, for !1 < ! < !2 < �2=˛2,

�1.`; !1/ < �1.`; !/ D 0 < �1.`; !2/:

In particular we have kerQb.`; !1/ D kerQb.`; !2/ D ¹0º, which proves the unique-
ness of the eigenvalue of A`;b .

Next we prove the existence of the eigenvalue. Using Lemma 2.12 (3) we may
assume that �1.`; �

2=˛2 � "=2/ > 0 for all ` 2 .0; `0/. Fix ` 2 .0; `0/. Since
�1.`; !/ ! �1 as ! ! �2=˛2 and �1.`; !/ depends continuously on ! it follows
that there exists z! 2 .�2=˛2 � "=2; �2=˛/ such that �1.`; z!/ D 0.

Remark 2.14. Another method of proof for Lemma 2.13 may be based on a variant
of operator-valued Rouché’s theorem, cf., e.g., [19] or the monograph [1].

Next, using the Birman–Schwinger principle, we prove the asymptotic formula
for the eigenvalue of A`;b . To this end we choose `0 > 0 such that the operator
Q0 C `Rb.`; !/ is invertible for all ` 2 .0; `0/ and ! 2 .�2=˛2 � "; �2=˛2/. The
existence of such an `0 follows from the estimate (17).
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Lemma 2.15 (Birman–Schwinger principle). Let ` 2 .0; `0/ and ! 2 .�2=˛2 � ";
�2=˛2/. Then 0 is an eigenvalue of the operator

`Qb.`; !/ D Q0 � `2
� j†j � �2

˛3

��r�2

˛2
� !

��1
Pct C `Rb.`; !/

if and only if 1 is an eigenvalue of the Birman–Schwinger operator

`2
� j†j � �2

˛3

��r�2

˛2
� !

��1
� P 1=2

ct .Q0 C `Rb.`; !//
�1P 1=2

ct :

A proof may be found, e.g., in [4].
Since the projection Pct is a rank-one operator with P 2ct D Pct D P

1=2
ct , the

Birman–Schwinger principle implies that ! is an eigenvalue of the operator A`;b
if and only if the trace of the Birman–Schwinger operator is equal to one, i.e.,

`2
��2
˛3

� 1r
�2

˛2
� !

h.Q0 C `Rb.`; !//
�1�0; �0i† D 1;

where �0.x/ D 1 is the (non-normalised) constant function onL2.†/. For the choice
! D �.`/ we obtain

s
�2

˛2
� �.`/ D `2

��2
˛3

�
h.Q0 C `Rb.`; �.`///

�1�0; �0i†:

Next we use an asymptotic expansion for the resolvent term. We have

.Q0 C `Rb.`; !//
�1 D .I C `Q�1

0 Rb.`; !//
�1Q�1

0 ;

D
1X

kD0
`k.�Q�1

0 Rb.`; !//
kQ�1

0 D Q�1
0 C O.`/; (18)

uniformly in ! 2 .�2=˛2;�"; �2=˛2/. Note that for suf�ciently small ` the sum con-
verges absolutely in L.L2.†//. Hence,

h.Q0 C `Rb.`; �.`///
�1�0; �0i† D hQ�1

0 �0; �0i† C O.`/

as ` ! 0, and thus,
q
�2=˛2 � �.`/ D `2

��2
˛3

�
h.Q0 C `Rb.`; �.`///

�1�0; �0i†

D
��2
˛3

�
� hQ�1

0 �0; �0i† � `2 C O.`3/:
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This proves the �rst term of the asymptotics in Theorem 2.9 with

�0.†/ WD hQ�1
0 �0; �0i† D hQ�1=2

0 �0; Q
�1=2
0 �0i† > 0: (19)

Until now no additional assumptions on b 2 L1.R/ were necessary. Now let b be
differentiable in a neighbourhood of 0. Then

hbT`g; T`hi†`
D
ˆ

†

b.`x/ � g.x/ h.x/ dx D b.0/hg; hi† C O.`/:

Note that the remainder may be estimated uniformly in the operator norm. Thus,
together with Theorem 2.8 we obtain

Rb.`; !/ D b.0/I C O.` ln `/:

The estimate holds uniformly in ` 2 .0; `0/ and j!� �2=˛2j < ". Using formula (18)
we obtain

.Q0 C `Rb.`; �.`//
�1 D Q�1

0 C `Q�1
0 Rb.`; �.`//Q

�1
0 C O.`2/

D Q�1
0 C ` � b.0/ � I C O.`2 � ln `/:

Finally,
q
�2=˛2 � �.`/ D `2

��2
˛3

�
h.Q0 C `Rb.`; !//

�1�0; �0i†

D
��2
˛3

�
� �0.†/ � `2 C

�b.0/�2
˛3

�
� �1.†/ � `3 C O.`4 ln `/

with
�1.†/ WD hQ�2

0 �0; �0i† D hQ�1
0 �0;Q

�1
0 �0i† > 0: (20)

This proves Theorem 2.9.
Now let † D .�1; 1/. Then the operator Q0 becomes the composition of the

standard �nite Hilbert transform and the derivative. Using (4.8) in [2] or Section 5.2
of [1] we obtain

.Q�1
0 �0/.x/ D

p
1 � x2;

which implies

hQ�1
0 �0; �0i† D

ˆ 1

�1

p
1� x2 dx D �

2
:

For the sake of simplicity we assume that b 2 C 2.R/. Then

hbT`g; T`hi†`
D
ˆ

†

b.`x/ � g.x/ h.x/ dx

D b.0/hg; hi† C ` � b0.0/hMxg; hi† C O.`2/;
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whereMx WL2.†/ ! L2.†/ is the multiplication operator

.Mxf /.x/ D xf .x/:

Theorem 2.8 implies

Rb.`; !/ D b.0/ � I C ` ln ` � �
˛2
Pct C `

��0.˛/
�

Pct C �

2˛2
Kln jxj C b0.0/Mx

�

CR
.1/

b
.`; !/;

with

kR.1/
b
.`; �.`//kL.L2.†// � C.`3 ln `C �2=˛2 � �.`// D O.`3 ln `/:

To calculate the asymptotic behaviour of the eigenvalue we use the expansion

.Q0 C `Rb.`; �.`///
�1 D Q�1

0 � ` � b.0/Q�2
0 � `2 ln ` � �

˛2
Q�1
0 PctQ

�1
0

� `2 � Q�1
0

��0.˛/
�

Pct C �

2˛2
Kln jxj C b0.0/Mx

�
Q�1
0

C `2 � b.0/2Q�3
0 C O.`3 ln `/:

Then

`�2
��2
˛3

��1
�
r
�2

˛2
� �.`/

D �

2
� ` � b.0/hQ�2

0 �0; �0i.�1;1/ � `2 ln ` � �
˛2

hQ�1
0 PctQ

�1
0 �0; �0i.�1;1/

� `2 � �0.˛/
�

hQ�1
0 PctQ

�1
0 �0; �0i.�1;1/ � `2 � �

˛2
hQ�1
0 Kln jxjQ�1

0 �0; �0i.�1;1/

� `2 � b0.0/hQ�1
0 MxQ

�1
0 �0; �0i.�1;1/ C `2 � b.0/2hQ�3

0 �0; �0i.�1;1/
C O.`3 ln `/:

In order to calculate the asymptotic behaviour of h.Q�1
0 C `R`;�.`//

�1�0; �0i.�1;1/
we shall need the following identities:

hQ�2
0 �0; �0i.�1;1/ D hQ�1

0 �0;Q
�1
0 �0i.�1;1/ D

ˆ 1

�1
.1 � x2/ dx D 4

3
;

hQ�1
0 PctQ

�1
0 �0; �0i.�1;1/ D hPctQ

�1
0 �0;Q

�1
0 �0i.�1;1/ D �2

8
;

hQ�1
0 MxQ

�1
0 �0; �0i.�1;1/ D hMxQ

�1
0 �0;Q

�1
0 �0i.�1;1/ D

ˆ 1

�1
x.1� x2/ dx D 0:
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Next we calculate hKln jxjQ�1
0 �0;Q

�1
0 �0i.�1;1/. Recall that .Q�1

0 �0/.x/ D
p
1� x2.

Using (5.6)–(5.9) in [1] for  WD Kln jxjQ�1
0 �0 we obtain

 0.x/ D p: v:
ˆ 1

�1
�0.x/

x � y dy D p: v:
ˆ 1

�1

p
1 � x2
x � y dy D �x:

Thus,  .x/ D �x2

2
C  .0/, where

 .0/ D
ˆ 1

�1
ln jxj

p
1� x2 dx D 2

ˆ 1

0

ln jxj
p
1� x2 dx D ��

2

�1
2

C ln 2
�
;

cf. Section 4.241 in [20]. Hence,

hKln jxjQ�1
0 �0;Q

�1
0 �0i.�1;1/

D �

2

ˆ 1

�1
x2

p
1 � x2 dx � �

2

�1
2

C ln 2
�ˆ 1

�1

p
1� x2 dx D �2

16
.�1� ln 16/:

Setting

�1 WD hQ�3
0 �0; �0i.�1;1/ D hQ�2

0 �0;Q
�1
0 �0i.�1;1/

D hQ�3=2
0 �0;Q

�3=2
0 �0i.�1;1/ > 0 (21)

we obtain
s
�2

˛2
� �.`/ D `2

� �3
2˛3

�
� `3

�4b.0/�2
3˛3

�
� `4 ln `

� �5
8˛5

�

� `4
��0.˛/�3

8˛3
� �5

32˛5
.1C ln 16/ � b.0/2�1 � �

2

˛3

�

C O.`5 ln `/:

This proves Theorem 2.10.
Concluding the two-dimensional case we brie�y want to sketch what happens in

the case of two waveguides of width ˛C and ˛�, which are coupled through a window
†` WD ` �†. We use the same ansatz and introduce the corresponding Dirichlet–to–
Neumann operatorsDC

`;!
andD�

`;!
on the upper and on the lower waveguide. Com-

paring the normal derivatives along the window we observe that ! is an eigenvalue
of the corresponding Dirichlet-Laplacian if and only if 0 is an eigenvalue of

D`;! WD DC
`;!

CD�
`;! :

Using the same scaling operator T` as above leads to the analysis of the operator

Q.`; !/ D QC.`; !/C Q�.`; !/ D T �
` D

C
`;!
T` C T �

` D
�
`;!T`:
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In what follows we assume that ˛C > ˛� so that the essential spectrum of the cor-
responding operator A` is given by the interval Œ�2=˛2

C;1/. Using the asymptotic
expansions of Q˙.`; !/ as ` ! 0 and ! ! �2=˛2C we obtain

Q.`; !/ D 2

`
Q0 � `

�r
�2

˛2
� !

��1� j†j � �2
˛3C

�
Pct C O.1/:

The same approach yields now the following result.

Theorem 2.16. In the case of two coupled waveguides the ground state eigenvalue
�.`/ satis�es

s
�2

˛2
� �.`/ D

� �2
2˛3C

�
� �0.†/ � `2 C O.`3/ as ` ! 0:

Here �0.†/ > 0 is again given by (19).

3 In�nite layers

We consider the mixed problem for an in�nite layer � WD R2 � .0; ˛/ with coordi-
nates .x; y/ D .x1; x2; y/ 2 R2 � .0; ˛/. Let † � ¹0º � @� be the Robin window,
where † � R2 is a bounded open subset with Lipschitz boundary. For ` > 0 we
denote by †` WD ` �† � R2 the scaled window. Let b 2 L1.R2/ be a real-valued
function and consider the quadratic form

a`;bŒu� WD
ˆ

�

ju.x; y/j2 dx dy C
ˆ

†`

b.x/ � ju.x; 0/j2 dx

with the form domain

DŒa`;b� WD ¹u 2 H 1.�/WujR2�¹˛º D 0 and supp.ujR2�¹0º/ � †`º:
As in the two-dimensional case we observe that a`;b is a closed semi-bounded form
in L2.�/, and thus, it induces a self-adjoint operator A`;b . The essential spectrum of
A`;b is independent of b and ` and given by �ess.A`;b/ D Œ�2=˛2;1/:We prove the
following theorem.

Theorem 3.1. There exists `0 D `0.˛; b; †/ > 0 such that the operator A`;b has a
unique eigenvalue �.`/ below the essential spectrum Œ�2=˛2;1/. If b is C 1 in some
neighbourhood of 0 2 R2 then the eigenvalue satis�es the asymptotic estimate

ln.�2=˛2 � �.`// D �`�3 4˛3

�0.†/C �1.†/b.0/`C O.`2/
as ` ! 0;
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with constants �0.†/ > 0 given by (23) and �1.†/ > 0 given by (24).

Since we shall only slightly modify our approach we will merely sketch the major
steps of the proof. Actually, most of the results proven in the two-dimensional case
may be reused. Let ! 2 C and g 2 H

1=2.R2/. We consider for u 2 H 1.�/ the
Poisson problem

.�� � !/u D 0 in �; u.�; 0/ D g; u.�; ˛/ D 0: (22)

Applying the Fourier transform with respect to the �rst two variables leads for every
� D .�1; �2/ 2 R2 to the following Sturm–Liouville problem

.�@2y C j�j2 � !/ Ou.�; �/ D 0 in .0; ˛/; Ou.�; 0/ D Og.�/; Ou.�; ˛/ D 0;

where � 2 R2. The solution of (22) is given by

Ou.�; y/ WD Og.�/ � sinh..˛ � y/
p

j�j2 � !/

sinh.˛
p

j�j2 � !/
;

which is similar to formula (3). In the same way we obtain that the Poisson prob-
lem (22) is uniquely solvable for all g 2 H 1=2.R2/ if and only if ! 2 CnŒ�2=˛2;1/.
Moreover, there exists c D c.˛; !/ > 0 such that kukH1.�/ � ckgk

H1=2.R2/
.

In what follows let ! 2 CnŒ�2=˛2;1/. Then the normal derivative of u satis�es

b@nu.�; 0/ D m!.j�j/ � Og.�/; � 2 R
2;

where the function m! is de�ned as in the two-dimensional case, i.e.,

m!.j�j/ D
p

j�j2 � ! � coth.˛
p

j�j2 � !/:

The Dirichlet–to–Neumann operator for the in�nite layer is given by the Fourier
integral operator

D! WH 1=2.R2/ �! H�1=2.R2/; bD!g.�/ WD m!.j�j/ � Og.�/:
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The next step is to de�ne the truncated operator on the boundary. The correspond-
ing spaces zH 1=2

0 .†`/ and H�1=2.†`/ are de�ned as in (5) and (6). As both † and
†` have Lipschitz boundary, the dual pairing (7) still holds true, cf. Theorems 3.14
and 3.30 in [25]. Put

D`;! C bW zH 1=2
0 .†`/ �! H�1=2.†`/; D`;! C b WD r`.D! C b/e`;

where

r`WH�1=2.R2/ �! H�1=2.†`/

denotes the restriction operator and

e`W zH 1=2
0 .†`/ �! H

1=2.R2/

the embedding operator. As in Lemma 2.4 we obtain

dim ker.A`;b � !/ D dim ker.D`;! C b/:

Let

T`WL2.†/ �! L2.†`/; .T`g/.x/ WD `�1g.x=`/

be the unitary scaling operator. In what follows we consider the scaled operator

Qb.`; !/ D T �
` .D`;! C b/T`

together with its associated sesquilinear form

qb.`; !/ WD hQb.`; !/g; hi†
D `2
ˆ

R2

m!.j�j/ � Og.`�/ h.`�/ d� C
ˆ

†

b.`x/ � g.x/ h.x/ dx;

where g; h 2 DŒqb.`; !/� WD zH 1=2
0 .†/. As before we de�ne

Q0W zH 1=2
0 .†/ �! H�1=2.†/; hQ0g; hi† WD q0Œg; h� WD

ˆ

R2

j�j � Og.�/ � Oh.�/ d�;

and letPct denote the projection onto the space of constant functions inL2.†/. More-
over, we denote by K1=jxjWL2.†/ ! L2.†/ the convolution operator

.K1=jxjf /.z/ WD
ˆ

†

f .z/

jx � zj dx; z 2 †:
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Theorem 3.2. Let b D 0. There exists `0 > 0 and " > 0 such that for ` 2 .0; `0/

and j! � �2=˛2j < " the following expansion holds true:

Q0.`; !/ D 1

`
Q0 C `2 � j†j

4˛3
ln
��2
˛2

� !
�
Pct � ` �

4˛2
K1=jxj CR.`; !/:

Here j†j denotes the volume of † and the remainder satis�es

kR.`; !/kL.L2.†// � C
�
`2 C �2

˛2
� !

�

for some constant C D C.˛;†/ > 0 which is independent of `, !.

Proof. We use the same decomposition for q0.`; !/ as in the two-dimensional case
and put

q0.`; !/Œg; h� D `2
�
ˆ

¹j�j�1º
C
ˆ

¹j�j>1º

�
m!.j�j/ � Og.`�/ h.`�/ d�

DW q.1/0 .`; !/Œg; h�C q
.2/
0 .`; !/Œg; h�:

Recall that

m!.�/ D 1

˛
C

1X

kD1

2˛.�2 � !/
˛2.�2 � !/C k2�2

D �
�2�2
˛3

� 1

�2 � ! C �2˛�2 C O.1/

for j�j � 1 and j! � �2=˛�2j < ". Thus

q
.1/
0 .`; !/Œg; h� D �`2 �

�2�2
˛3

�ˆ

¹j�j�1º
1

j�j2 � ! C �2˛�2 � Og.`�/ h.`�/ d�

C O.`2/:

We note that the the �rst expression coincides almost with the free resolvent of the
Laplacian in R2, which with respect to the spectral parameter ! has a logarithmic

singularity. Using the Taylor expansion of Og � NOh at 0 we have

� `2 �
�2�2
˛3

�ˆ

¹j�j�1º
1

j�j2 � ! C �2˛�2 � Og.`�/ h.`�/ d�

D �`2 �
�2�2
˛3

�
�
X

ˇ2N2
0

`jˇ j 1
ˇŠ

@ˇ

@�ˇ
. Og.�/ NOh.�//

ˇ̌
ˇ
�D0

�
ˆ

¹j�j�1º
�ˇC1

j�j2 C �2˛�2 � !
d�

D �`2 �
�2�2
˛3

�
Og.0/ NOh.0/ �

ˆ

¹j�j�1º
1

j�j2 C �2˛�2 � !
d� C O.`3/;
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since for jˇj � 1 we have
ˇ̌
ˇ̌
ˆ

¹j�j�1º
�ˇ

j�j2 C �2˛�2 � ! d�

ˇ̌
ˇ̌ �
ˆ 1

0

r2

r2 C �2˛�2 � ! dr � C

and C may be chosen independently of !. Moreover,
ˆ

¹j�j�1º
1

j�j2 C �2˛�2 � ! d� D �1
2
ln
��2
˛2

� !
�

C O.1/;

and thus,

q
.1/
0 .`; !/Œg; h� D `2 �

��2
˛3

�
Og.0/ � NOh.0/ � ln

��2
˛2

� !
�

C O.`3/

D `2 �
� j†j
4˛3

�
ln
��2
˛2

� !
�
hPctg; hi† C O.`3/:

Next we consider the form q.2/0 .`; !/. The expansion (14) ofm! for large j�j implies

q
.2/
0 .`; !/Œg; h�

D `2
ˆ

¹j�j>1º
m!.j�j/ � Og.`�/ Oh.`�/ d�

D 1

`
q0Œg; h�� `2 � !

2

ˆ

R2

Og.`�/ Oh.`�/
j�j d� C `2

ˆ

R2

m!;res.j�j/ � Og.`�/ Oh.`�/ d�;

with

m!;res.j�j/ D �1¹j�j�1º.�/ � j�j C 1¹j�j>1º.�/ � .m!.j�j/ � j�j/C !

2j�j :

We choose the functions X! ; X!;res 2 C1.R2n¹0º/ such that

yX!.�/ D !

4�j�j and yX!;res.�/ D 1

2�
m!;res.�/:

Calculating X! for .s; '/ 2 RC � .0; 2�/, x D .s cos'; s sin '/ we have

X!.x/ D !

8�2

ˆ

R2

eix�

j�j d�

D !

8�2

ˆ 1

0

ˆ �

��
eist.cos' sin'/�.cosu sinu/T du dt

D !

4�

ˆ 1

0

J0.ts/ dt:
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Here J0 is the Bessel function of the �rst kind of order 0. Moreover, all integrals
should be interpreted as oscillatory integrals or improper Riemann integrals. Using
Section 6.511 in [20] we obtain

X!.x/ D !

4�jxj
ˆ 1

0

J0.r/dr D !

4�jxj ;

and thus,

`2 � !
2

ˆ

R2

Og.`�/ Oh.`�/
j�j d� D !

4�
hK1=jxjT`g; T`hi†`

D ! � `2
4�

ˆ

†�†
g.x/ h.z/

`jz � xj dx dz

D ` � �

4˛2
hK1=jxjg; hi† C O

��2
˛2

� !
�
:

Note that m!;res.�/ D O.j�j�3/ as j�j ! 1, uniformly in ! 2 .0; �2=˛2/, and thus,

sup
!2.0;�2=˛2/

kX!;reskL1.R2/ < 1;

which implies

`2
ˆ

R2

m!;res.j�j/ � Og.`�/ Oh.`�/ d� D `2
ˆ

†�†
X!;res.`.z � x// � g.x/ h.z/ dx dz

D O.`2/:

This concludes the proof of the theorem.

Let us now prove the asymptotics of the ground state eigenvalue of the operator
A`;b as ` ! 0. We shall omit the proof of the uniqueness or the existence of the eigen-
value for small ` > 0 as this follows in much the same way as in Lemma 2.13. We
note that the operator Q0 is again invertible and a Fredholm operator since zH 1=2

0 .†/ is
compactly embedded into L2.†/, cf. the arguments from the previous section. Then
for arbitrary b 2 L1.R2/ we have

`Qb.`; !/ D Q0 C `3 � j†j
4˛3

ln
��2
˛2

� !
�

� Pct C `Rb.`; !/

with

sup
°
kRb.`; !/kW ` 2 .0; `0/ and

ˇ̌
ˇ! � �2

˛2

ˇ̌
ˇ < "

±
< 1:
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Applying the Birman–Schwinger principle, we obtain the following identity for the
eigenvalue �.`/

� `3

4˛3
ln
��2
˛2

� �.`/
�

� h.Q0 C `Rb.`; �.`///
�1�0; �0i† D 1

or equivalently

ln
��2
˛2

� �.`/
�

D � 4˛3

`3 � h.Q0 C `Rb.`; �.`///
�1�0; �0i†

:

Here �0.x/ D 1 is again the non-normalised constant function in L2.†/. As before
we obtain

� ln
��2
˛2

� �.`/
�

D 4˛3

`3 � �1.†/C O.`4/

as ` ! 0. Here

�1.†/ WD hQ�1
0 �0; �0i† D hQ�1=2

0 �0;Q
�1=2
0 �0i† > 0: (23)

This proves the �rst term of the asymptotic formula. Higher terms of the expansion
may be calculated as above; assuming smoothness of b we obtain

ln
��2
˛2

� �.`/
�

D �`�3 4˛3

�0.†/ � ` � �1.†/ � b.0/C O.`3/
as ` ! 0;

where

�1.†/ WD hQ�1
0 �0;Q

�1
0 �0i† > 0: (24)

This concludes the proof of Theorem 3.1.
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Dirichlet eigenfunctions in the cube,

sharpening the Courant nodal inequality

Bernard Helffer and Rola Kiwan

To Pavel Exner on the occasion of his 70th birthday

1 Introduction and main result

Consider the Dirichlet eigenvalues of the Laplacian in a bounded domain � with
piecewise C 1-boundary.

´
��u D �u in �;

u D 0 on @�:
(1)

We denote by
¹�kºk�1 D ¹�k.�/ºk�1

the sequence of eigenvalues (counted with their multiplicity):

�1 < �2 � �3 � � � � � �k � � � � :

It is well known that the �rst eigenvalue is simple and that the eigenfunction u1 has
a constant sign in �. All the higher order eigenfunctions must change sign inside �
and, consequently, must vanish inside �.

We call nodal set of an eigenfunction uk associated with �k the closure of the
zero set of uk ,

N.uk/ D ¹x 2 �I uk.x/ D 0º:
This nodal set cuts the domain � n N.uk/ into �k D �.uk/ connected components
called “nodal domains.”

The famous Courant nodal theorem [7] of 1923 states that

�.uk/ � k:

We will say that an eigenvalue � is Courant sharp if � D �k and if there exists an
associate eigenfunction with k nodal domains. While it is always true in the case
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of dimension 1 by the Sturm–Liouville theory, Pleijel’s theorem [27] asserts in 1956
that equality can only occur for a �nite set of k’s, when the dimension is at least two.

Since we know that the �rst eigenfunction does not vanish and that the second
eigenfunction has exactly two nodal domains, �1 and �2 are Courant sharp (�1 D 1

and �2 D 2). We are now interested in checking if other eigenvalues are Courant
sharp.

Starting from the founding paper by Å. Pleijel [27], many other works have
investigated in which cases this inequality is sharp: Helffer, Hoffmann-Ostenhof,
and Terracini [13] and [14], Helffer and Hoffmann-Ostenhof [11] and [12], Bérard
and Helffer [3], [4], and [5], Helffer and Persson-Sundqvist [16], Léna [22], and
Leydold [23], [24], and [25]. All these results were devoted to (2D)-cases in open
sets in R2: squares, rectangles, equilateral triangles, disks, …, or in surfaces like S2

or T2.
The aim of the current paper is to start the analysis of analogous results for do-

mains in R3. Looking at explicitly solvable models and avoiding easy cases where
the multiplicity of each eigenvalue is one (making the analysis of the nodal set easy),
it is natural to �rst consider the case of the cube. More precisely, we will prove:

Theorem 1.1. In the case of the cubeC WD .0; �/3 the only eigenvalues of the Dirich-
let Laplacian which are Courant sharp are the two �rst eigenvalues: �1 D 3 and
�2 D 6.

2 Coming back to Pleijel’s paper

Outside the proof of Pleijel’s theorem in 2D, Pleijel [27] (see also [3] for a more
detailed analysis) considers as an example the case of the square which reads

Theorem 2.1. In the case of the square the only eigenvalues which are Courant sharp
for the Dirichlet Laplacian are the two �rst eigenvalues and the fourth one.

The proof was based on a �rst reduction to the analysis of the eigenvalues less
than 68 (the argument will be extended to the (3D)-case below and this is a quanti-
tative version of the proof of Pleijel’s theorem), then all the other eigenvalues were
eliminated using this time a more direct consequence of Faber–Krahn’s inequality,
except three remaining cases for which Pleijel was rather sketchy and which have to
be treated by hand.
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At the end of his celebrated paper Å. Pleijel wrote:

“In order to treat, for instance the case of the free three-dimensional mem-
brane Œ0; ��3, it would be necessary to use, in a special case, the theorem
quoted in [8], p. 394.a This theorem which generalizes part of the Liouville–
Rayleigh theorem for the string asserts that a linear combination, with con-
stant coef�cients, of the n �rst eigenfunctions can have at most n nodal
domains. However, as far as I have been able to �nd there is no proof of
this assertion in the literature.”

a In the German version, this is p. 454 in the English version.

Pleijel was indeed speaking of a result presented in [8] as being proved in the the-
sis defended in 1932 at the University of Göttingen by Horst Herrmann (with Richard
Courant as advisor). This so called Courant-Herrmann conjecture was asserting that,
for a given k 2 N, Courant’s theorem holds also for linear combinations of eigen-
functions associated with eigenvalues �j with j � k. It is said in [10] that the authors
can not �nd any mention of the result in the thesis itself. We learned in a recent article
by N. Kuznetsov [20] that V. Arnold [1] has discussed this question with R. Courant
in the seventies and that he can prove that this theorem cannot be true in general.

Pleijel is not explicitly saying why he needs this result but one could think that he
is interested, because he speaks about the “free problem” (i.e., the Neumann prob-
lem), in counting the number of components of the restriction of an eigenfunction to
a face of the cube .0; �/3. Looking for example to the zeroset of

.x; y; z/ 7�! a cos x cos y cosnz C b cos y cos z cosnx C c cos z cos x cosny;

one gets for �xed z D 0, a linear combination of the eigenfunctions of the square
cos x cos y, cos y cosnx and cos x cosny corresponding to two different eigenspaces
for the Neumann Laplacian in the square .0; �/�.0; �/. We will not go further in this
paper on the Neumann problem but similar questions could also occur in the Dirichlet
problem and we typically meet below the eigenfunction

.x; y; z/ 7�! a sin x sin y sin nz C b sin y sin z sin nx C c sin z sin x sin ny;

andwill be interested for example in the intersection of its zero set with the hyperplace
¹z D �=2º inside the cube (in the case n D 3).
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3 Reminder on Pleijel’s theorem in 3D

Let us �rst prove that there are only a �nite number of eigenvalues that satisfy �k WD
�.uk/ D k. This proof was given in dimension n by Bérard and Meyer [6].

Proposition 3.1. If �k is an eigenvalue of (1) such that �k�1 < �k , and uk is an
associated eigenfunction, then

�
3=2

k
j�j � �.uk/

4

3
�4; (2)

where j�j denotes the volume of �.

Proof. Assume that the nodal set cuts the domain � in �k connected components
and let us denote them by �i ; 1 � i � �k : Since uk does not vanish inside �i , it is
equal to its �rst eigenvalue and now using the (3D)-Faber–Krahn inequality on each
component (see for example Bérard and Meyer [6]):

�
3=2

k
j�i j � 4

3
�4; for 1 � i � �k :

Adding together all the equations we get (2).

Theorem 3.2. One has

lim sup
k!C1

�k

k
� 9

2�2
< 1: (3)

In particular, there exists only a �nite number of eigenvalues satisfying �k D k.

Proof. We start from the Weyl asymptotics for the counting function

N.�/ WD #¹k; �k < �º; (4)

which reads

N.�/ � 1

6�2
j�j�3=2:

For an eigenvalue �k such that �k�1 < �k , we have N.�k/ D k � 1: Then from

�
3=2

k
� 6�2

j�j k

together with (2), we get (3).

Remark 3.3. It is clear from (3) that we cannot have an in�nite number of eigenvalues
satisfying �k D k.
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4 The case of the cube

Let us consider the cube .0; �/3 for which an orthogonal basis of eigenfunctions for
the Dirichlet problem is given by

´
u`;m;n.x; y; z/ D sin.`x/ � sin.my/ � sin.nz/;
�`;m;n D `2 Cm2 C n2;

for `;m; n � 1.
Applying Proposition 3.1 for this domain, we get

Proposition 4.1. If uk is an eigenfunction associated with �k such that uk has k
nodal domains and if �k�1 < �k we have

�k
3=2

k
� 4

3
�: (5)

Here we will try to �nd a lower bound for the number N.�/, since we know the
�’s are equal to `2 C m2 C n2 where `;m; n are integers, so we need to count the
number of the lattice points of R3 inside the sphere of radius

p
�.

Lemma 4.2. If � � 3, then

N.�/ >
�

6
�

3=2 � 3�

4
�C 3

p
� � 2 � 1: (6)

The proof is given in the appendix.

Lemma 4.3. If uk is an eigenfunction associated with �k such that uk has k nodal
domains we have

� 3
4�

� �

6

�
�

3=2 C 3�

4
� � 3

p
�C 3 > 0:

Proof. First by the Courant theorem, we have necessarily �k�1 < �k .
Applying (6), we have

k � 1 D N.�/ >
�

6
�

3=2 � 3�

4
�C 3

p
� � 2 � 1;

i.e.,

k >
�

6
�

3=2 � 3�

4
�C 3

p
� � 2:
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Together with (5), this implies
� 3
4�

� �

6

�
�

3=2 C 3�

4
� > 3

p
� � 2:

One immediately sees that, for � � 3 ,
p
� � 2 �

p
� D � 2p

�C
p
� � 2

� � 2

1C p
3
> �1:

Now setting � D
p
� we get the third order inequality
� 3
4�

� �

6

�
�3 C 3�

4
�2 � 3�C 3 > 0: (7)

Now, consider the cubic function

h.x/ D
� 3
4�

� �

6

�
x3 C 3�

4
x2 � 3x C 3 on .0;C1/.

The coef�cient of x3 is strictly negative. One can check easily that h.7/<0 , h0.7/<0
and that h00.x/ < 0 for all x > 7. This implies that h.x/ is negative for x > 7. Hence
Inequality (7) for a positive � implies � 2 .0; 7/ and coming back to �: � < 49.
So we have �nally proved:

Proposition 4.4. If uk is an eigenfunction associated with �k such that uk has k
nodal domains and if �k�1 < �k , we have

�k � 48:

5 The list

In this section, we establish the list of the eigenvalues which are less than 48 and
determine which of these eigenvalues satisfy the necessary condition (5) for being
Courant sharp.

Coming back to the consequences of Faber–Krahn’s inequality, one can check
that among all the values on Table 1, the only eigenvalues that satisfy inequality (5)
and �k�1 < �k are �1 , �2 , �5 , �8 and �12 .

Proposition 5.1. The only eigenvalues which can be “Courant sharp” are the eigen-
values �k with k D 1; 2; 5; 8 and 12.

As �1 and �2 are Courant sharp, the only remaining cases to analyze correspond
to k D 5; 8; 12.

In the next section we will by a �ner analysis involving symmetries eliminate
other cases.
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Table 1. List of all eigenvalues less than 49

k .`;m;n/ �k

�1 (1,1,1) 3

�2 D �3 D �4 (1,1,2) 6

�5 D �6 D �7 .1; 2; 2/ 9

�8 D �9 D �10 (1,1,3) 11

�11 (2,2,2) 12

�12 D �13 D �14 D �15 D �16 D �17 (1,2,3) 14

�18 D �19 D �20 (2,2,3) 17

�21 D �22 D �23 (1,1,4) 18

�24 D �25 D �26 (1,3,3) 19

�27 D �28 D �29 D �30 D �31 D �32 (1,2,4) 21

�33 D �34 D �35 (2,3,3) 22

�36 D �37 D �38 .2; 2; 4/ 24

�39 D �40 D �41 D �42 D �43 D �44 .1; 3; 4/ 26

�45 D �46 D �47 D �48 .3; 3; 3/& .1; 1; 5/ 27

�49 D �50 D �51 D �52 D �53 D �54 .2; 3; 4/ 29

�55 D �56 D �57 D �58 D �59 D �60 .1; 2; 5/ 30

�61 D �62 D �63 D �64 D �65 D �66 .1; 4; 4/& .2; 2; 5/ 33

�67 D �68 D �69 .3; 3; 4/ 34

�70 D �71 D �72 D �73 D �74 D �75 .1; 3; 5/ 35

�76 D �77 D �78 .2; 4; 4/ 36

�79 D �80 D �81 D �82 D �83 D �84 D �85 D �86 D �87 .1; 1; 6/& .2; 3; 5/ 38

�88 D �89 D �90 D �91 D �92 D �93 D �94 D �95 D �96 .1; 2; 6/& .3; 4; 4/ 41

�97 D �98 D �99 D �100 D �101 D �102 .1; 4; 5/ 42

�103 D �104 D �105 .3; 3; 5/ 43

�106 D �107 D �108 .2; 2; 6/ 44

�109 D �110 D �111 D �112 D �113 D �114 .2; 4; 5/ 45

�115 D �116 D �117 D �118 D �119 D �120 .1; 3; 6/ 46

�121 .4; 4; 4/ 48

6 Courant theorem with symmetry

We �rst recall some generalities which come back to Leydold [23], and were used in
various contexts, see [24], [25], [16], and [14]. Suppose that there exists an isometry
g such that g.�/ D � and g2 D Id . Then g acts naturally on L2.�/ by gu.x/ D
u.g�1x/, for all x 2 �; and one can naturally de�ne an orthogonal decomposition
of L2.�/,

L2.�/ D L2
odd

˚ L2
even
;

where by de�nition

L2
odd

D ¹u 2 L2; gu D �uº
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and

L2
even

D ¹u 2 L2; gu D uº:

These two spaces are left invariant by the Laplacian and one can consider separately
the spectrum of the two restrictions. Let us explain for the “odd case” what could
be a Courant theorem with symmetry. If u is an eigenfunction in L2

odd
associated

with �, we see immediately that the nodal domains appear by pairs (exchanged by g)
and following the proof of the standard Courant theorem we see that if � D �odd

j for
some j (that is the j -th eigenvalue in the odd space), then the number �.u/ of nodal
domains of u satis�es �.u/ � j .

We get a similar result for the “even” case (but in this case a nodal domain D is
either g-invariant or g.D/ is a distinct nodal domain).

These remarks may lead to improvements when each eigenspace has a speci�c
symmetry. As we shall see, this will be the case for the cube with the map

.x; y; z/ 7�! .� � x; � � y; � � z/:

We observe indeed that

u`;m;n.� � x; � � y; � � z/ D .�1/`CmCnC1u`;m;n.x; y/;

and that

`2 Cm2 C n2 � `CmC n .mod 2/:

Hence, for a given eigenvalue the whole eigenspace is even if `CmC n is odd and
odd if `CmCn is even. Equivalently, the whole eigenspace is even if the eigenvalue
is odd and even if the eigenvalue is odd.

Application

�5 is not Courant sharp. The eigenspace associated with �5 D 9 is even. This
is the second one (in this even space). Hence it should have less than four nodal
domains by Courant’s theorem with symmetry and has labelling 5.

�12 is not Courant sharp. �12 D 14 is the �fth eigenvalue in the odd space with
respect to � . It should has less than 10 nodal domains and has labelling 12.



Dirichlet eigenfunctions in the cube, sharpening the Courant nodal inequality 361

7 The remaining value: k D 8

7.1 Main result

The proof of our main theorem relies now on the analysis of the last case which is
the object of the next proposition.

Proposition 7.1. In the eigenspace associated with �8 the eigenfunctions have
either 2, 3, or 4 nodal domains. In particular �8 cannot be Courant sharp.

7.2 Preliminaries

For the value �8 D 11 we have to analyze the zeroset of

ˆa;b;c.x; y; z/ WD a sin x sin y sin 3z C b sin y sin z sin 3x C c sin z sin x sin 3y;

for .a; b; c/ ¤ .0; 0; 0/.
This looks nice because we can divide by sin x sin y sin z and by making the

change of coordinates u D cos x, v D cos y, w D cos z, we get for the zero
set of ˆa;b;c in the new coordinates a quadric surface Qa;b;c to analyze in the cube
C D .�1; 1/3 , whose equation is

.Qa;b;c/W 4 .au2 C bv2 C cw2/ � .aC b C c/ D 0;

for .a; b; c/ ¤ .0; 0; 0/.
When aCbCc ¤ 0, we immediately see that there are no critical points inside the

cube, so the nodal set is simply an hypersurface (cylinder, ellipsoid or hyperboloid
with one or two sheets). In this case, this is the analysis at the six faces of the cube
which will be decisive for analyzing possible changes in the number of connected
components. In the case when aC b C c D 0, we have a double cone with a unique
critical point at .0; 0; 0/.

In the next subsections, we discuss the different cases.

7.3 Cylinder

This corresponds to the case abc D 0 . We can use the (2D)- analysis as done in [3].
It is known that the number of nodal domains can only be 2, 3, or 4 (See Section 3.1
and Figure 2.1 there). See Figure 1.1

1All the pictures in this paper were produced using MATLAB.
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(a)

.a; b; c/ D .1; 1; 0/

(b)

.a; b; c/ D .1;�1; 0/
(c)

.a; b; c/ D .1; 0; 0/

Figure 1. Cylinders

7.4 Double cone

This corresponds to abc ¤ 0 and a C b C c D 0 . The equation of Qa;b;c is

au2 C bv2 D �cw2:

One can verify that the intersection of this cone with each horizontal side w D ˙1
is exactly at the vertices of the cube u2 D v2 D 1, and that the intersection with
each vertical face is a hyperbola. Therefore there are three connected components of
C n Qa;b;c . See Figure 2.

Figure 2. Double cones. .a; b; c/ D .0:2; 0:2;�0:4/

7.5 Ellipsoid

This corresponds to abc ¤ 0, with a; b; c of the same sign. Without loss of generality,
we can assume that 0 < a � b � c and that aCbC c D 1. We note that this implies
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3=2 .aC b/ � a C 2b � 1 and

au2 C bv2 C .1� a � b/w2 D 1

4
:

We denote by �a;b;c the open full ellipsoid delimited by Qa;b;c .
Let us look at the intersection of Qa;b;c with the horizontal faces. We have

au2 C bv2 � �3
4

C 2

3
< 0:

We deduce that in this case there are no possible intersections with the horizontal
faces, and therefore two subcases can occur depending on the intersection of Qa;b;c
with the vertical edges. This set is determined by

.1 � a � b/w2 D 1

4
� .a C b/; w 2 .�1;C1/:

See Figure 3.

Figure 3. Ellipsoids

Subcase .a C b/ > 1=4 . The ellipsoid Qa;b;c does not touch the vertical edges
and in this case C \ �a;b;c

c
is connected and C n Qa;b;c has exactly two connected

components.

Subcase .aCb/ � 1=4: Qa;b;c cuts each vertical edge along a segment Œ�w0;Cw0�
with

w0 D

vuut
1

4
� .aC b/

1 � a � b
:

The intersection of Qa;b;c with each vertical face of the cube is the union of two arcs
of an ellipse. In this case it is clear that C n Qa;b;c has three connected components.
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7.6 One sheet hyperboloid

This corresponds to abc ¤ 0, a; b; c not of the same sign and .abc/.aCbCc/ < 0 .
Without loss of generality, we can assume that b � a > 0, c < 0 and aCbC c D 1 .
We note that this implies that Qa;b;c \ ¹w D 0º is an ellipse contained in the cube.

The equation of Qa;b;c can be written as

au2 C bv2 D 1

4
� cw2:

Qa;b;c cutsR3 into two components�C
a;b;c

and��
a;b;c

where�C
a;b;c

contains .0; 0; 0/.
But we have to look inside the cube.

We �rst observe that Qa;b;c has empty intersection at the vertical edges. We have
indeed

a C b D 1 � c > 1

4
� c � 1

4
� cw2:

We now look at the intersection with w D 0. We get an ellipse

E0a;b;c WD Qa;b;c \ ¹w D 0º;
whose equation is

au2 C bv2 D 1

4
:

We observe that this ellipse could be included in the cube, if a > 1=4 or not if a � 1=4.
We also look at the intersection with the upper horizontal face. We note that the

ellipse
E1a;b;c WD Qa;b;c \ ¹w D 1º

has always a non empty intersection with this face.
Four subcases appear (See Figure 4).

Subcase a � 1=4. Under this condition Qa;b;c \ ¹v D 0º \ C is empty. Hence
¹v D 0º \ C is contained in one nodal domain which is invariant by v 7! �v. The
other nodal domains are exchanged by this symmetry. This gives an odd number of
nodal domains and this can not be Courant sharp because the labelling is 8. More
precisely the two curves in C de�ned by

v D ˙

p
1

4
� au2 � cw2

b

cut the cube in three components.
The three last subcases are under the condition that a > 1=4. We note that this

condition implies that E0
a;b;c

is strictly included in the square .�1;C1/ � .�1;C1/
and the discussion continues according to the position of E1

a;b;c
in the horizontal face.
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(a) .a; b; c/ D .0:2; 0:9; 0:1/ (b) .a; b; c/ D .0:5; 0:6;�0:1/

(c) .a; b; c/ D .0:5; 0:8;�0:3/ (d) .a; b; c/ D .0:8; 0:8;�0:6/

Figure 4. One Sheet Hyperboloid

Subcase 1=4 < a � b < 3=4. E1
a;b;c

is contained in the horizontal face and Qa;b;c

cuts the cube in two connected domains.

Subcase 1=4 < a < 3=4 � b. E1
a;b;c

\@C consists of two curves but Qa;b;c continue
to cut the cube in two domains. For joining two points of��

a;b;c
\@C one can always

go to a point in ¹w D 0º outside of E0
a;b;c

and use the connexity (inside the square
C \ ¹w D 0º) of the complementary of the full ellipse.

Subcase 3=4 � a. E1
a;b;c

\C consists of four curves. Qa;b;c continue to cut the cube
in two domains.

7.7 Two sheets hyperboloid

This corresponds to abc ¤ 0, a; b; c not of the same sign and .abc/.aC bC c/ > 0.
We can assume b � a > 0, c < 0 and a C b C c D �1: The equation of Qa;b;c
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can be written as:

au2 C bv2 D �1
4

� cw2:

The hyperplane ¹w D 0º is contained in one connected component. Hence looking
at the symmetry w 7! �w, we get that necessarily an odd number (� 3) of nodal
domains and � 8 by Courant’s theorem. Hence we know that it cannot be Courant
sharp.

More precisely, Qa;b;c meets the hyperplane ¹w D 1º along the ellipse Ea;b;c

which this time contains the horizontal upper face of the cube. The analysis of the
intersection along each of the vertical faces (two symmetric curves by w 7! �w)
shows that we always have exactly three connected components. See Figure 5.

Figure 5. Two Sheets Hyperboloid: .a; b; c/ D .0:8; 0:8;�2:6/

8 Conclusion

In this paper we have analyzed the problem in the simplest example proposed by
Pleijel. One can of course ask for similar questions for other geometries starting
with the parallelepipeds, the ball (this case has been solved in [17]), the �at torus
(C. Léna has announced the characterization in this case). It is probably dif�cult to
�nd other solvable cases. The situation for .0; ˛�/� .0; ˇ�/� .0; �/ is in principle
easier in the “irrational” case when ˛`2Cˇm2Cn2 D ˛`21Cˇm21C1n

2
1 implies

.`; m; n/ D .`1; m1; n1/. Each eigenvalue ˛`2Cˇm2Cn2 is indeed of multiplicity
1 and the corresponding eigenfunction has `mn nodal domains.

One can also think of analyzing “thin structures” (for example  small or ˇ C 

small, where previous results in lower dimension can probably be used) in the spirit
of [11] and get partial results. Another interesting question would be to analyze the
Neumann problem for the cube in the spirit of [16].
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Appendix. Proof of Lemma 4.2

We follow an idea appearing in the (2D)-case in a course of R. Laugesen [21].
We start by assuming that � is not an eigenvalue. With each triple .`; m; n/ with
` � 1, m � 1, n � 1, we associate the cube

Q`;m;n D .` � 1; `/ � .m � 1;m/ � .n� 1; n/:

We observe that

N.�/ D
X

`2Cm2Cn2<�; `�1;
m�1; n�1

jQ`;m;nj � �

6
�

3=2;

where we recall that j�j denotes the volume of �.
We are interested in the lower bound. The claim of Laugesen is that

N.�/ > jB�j; (8)

where

B� WD ¹.x C 1/2 C .y C 1/2 C .z C 1/2 < �; x > 0; y > 0; z > 0º:

The observation is that

B� �
[

`2Cm2Cn2<�; `�1;
m�1; n�1

Q`;m;n:

For t > 0, Œt �C denotes the smallest integer � t .
Let .x; y; z/ 2 B�, then it is immediate to see that .x; y/ 2 QŒx�C;Œy�C;Œz�C .

It remains to verify that

QŒx�C;Œy�C;Œz�C � D.0;
p
�/;

whereD.0; �/ denotes the open ball in R3 of radius �.
But we have, for .x; y; z/ 2 B�,

Œx�2C C Œy�2C C Œz�2C � .x C 1/2 C .y C 1/2 C .z C 1/2 < �:

Coming back to (8), we have to �nd a lower bound for the area of B�. We note that
by translation by the vector .1; 1; 1/:

jB�j D jC�j;
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where
C� WD D.0;

p
�/ \ ¹x > 1º \ ¹y > 1º \ ¹z > 1º:

Let � the characteristic function of the interval .0; 1/. We have to compute the
integral

jC�j D
ˆ

D.0;
p
�/

.1� �.x//.1� �.y//.1� �.z//dxdydz:

Developing the formula and using the symmetry by permutation of the variables,
we get, if � � 3 ,

jC�j D
ˆ

D.0;
p
�/

dxdydz

� 3

ˆ

D.0;
p
�/

�.x/dxdydz

C 3

ˆ

D.0;
p
�/

�.x/�.y/dxdydz

�
ˆ

D.0;
p
�/

�.x/�.y/�.z/dxdydz:

It is then immediate to get the lemma by observing that
ˆ

D.0;
p
�/

�.x/�.y/dxdydz >
p
� � 2: (9)

We have assumed till now that �was not an eigenvalue. But if � is an eigenvalue> 3,
we can apply the previous result for an increasing sequence O�j such that O�j ! �

(where O�j > 3 is not an eigenvalue). According to our de�nition of N.�/ in (4), we
can pass to the limit and observing that in (9) the inequality is uniformly strict when
applied to the sequence �j , we keep the strict inequality when passing to the limit.
The case � D 3 can be veri�ed directly.
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A mathematical modeling

of electron–phonon interaction

for small wave numbers close to zero

Masao Hirokawa

This paper is dedicated to Pavel Exner

on the occasion of his 70th birthday

by introducing a part of our attempts in material science,

that is, a mathematical modeling of electron–phonon interaction

for small wave numbers close to zero.

We extrapolate the electron–phonon interaction

on the presupposition that the phonon dispersion relation

and the electron–phonon coupling function

are estimated using some experimental data.

1 Introduction

Modeling for electron–phonon interaction plays an important role in experiments
to analyze the materials such as metal and crystal, see [25], [26], [38], [52], [53],
and [58]: A model is proposed using the experimental data and following theory.
Another experiment is performed to check the validity of the model. Such trial and
error are always repeated in the circumstances of the experiment scene. The form
of the interaction between an electron and a phonon-�eld depends on the concrete
material. We have to extrapolate the interaction for the as-yet-unrecognized material
based on the data obtained in the experiments. What we can estimate from the ex-
perimental data are usually the phonon dispersion relation and the electron–phonon
coupling function. Several methods for estimating the phonon dispersion relation has
been established basically by the so-called Raman spectroscopy which is an exper-
imental method using the Raman effect (i.e., the Raman scattering), see [6], [27],
and [29]. Some methods for estimating the electron–phonon coupling function have
lately been developed with vivacity, see [25], [26], [37], [38], [52], [53], and [58].
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This paper devotes special attention to the interaction between the electron and
the massless phonon. We then meet the so-called infrared (IR) problem for massless
phonon to argue the existence of ground state in the same way as for massless pho-
ton, see [1], [2], [3], [4], [5], [9], [15], [16], [17], [18], [19], [21], [22], [23], [24],
[39], and [46]. We investigate the condition to distinguish between the existence
and absence of the ground state, though in this paper we argue neither instability
nor phase transition caused by the so-called soft phonon (i.e., phonon’s softening),
see [6], [29], [34], [40], and [55]. The IR problem is primarily the dif�culty occurred
as the wave number vanishes; it may be described by the interaction information for
small wave number. Thus, as the �rst step of this intuition, we make the follow-
ing set-ups: We assume that we can estimate the phonon dispersion relation !.k/
from the experimental data of the dispersion curve observed in the same way by the
Raman spectroscopy, see [6], [8], [11], [45], [49], and [58]. In addition, we assume
that we can estimate the electron–phonon coupling function �.k/ from the experi-
mental data obtained in a roughly similar way of, for instance, the angle-resolved
photoemission spectroscopy – see [25] and [26] – or the tunneling experiment (resp.
tunneling measurement), see [37], [52], [53], and [56]. The former is an experimen-
tal technique which enables us to observe a kink by electron–phonon interaction,
see [7], [30], and [57]. The latter is the probe of the electron–phonon interaction
using the tunneling of single particle states, see [20], [43], [44], and [51]. These ex-
perimental methods are based on theMigdal–Eliashberg theory [10] and [33]. In their
theory the so-called Fröhlich Hamiltonian [14] is employed, and thus, it is described
by the electron-�eld and the phonon-�eld. In this paper, however, we employ the
Schrödinger operator for the electron instead of the electron-�eld. Whether the IR
problem takes place is determined on the behavior of those two functions, !.k/; �.k/,
at very small wave number jkj. The massless phonon has !.k/ � 0, the decay of the
dispersion relation, at jkj � 0. We, in particular, are interested in the decay order
because it is dif�cult to grasp only from the data observed in experiments (see, for
example, �gures of the estimated phonon dispersion relation in [6], [8], [11], [34],
[45], [48], [49], [55], and [58]). Meanwhile, the electron–phonon coupling func-
tion also has the decay, j�.k/j � 0, at jkj � 0 to avoid the IR catastrophe. Since
the electron–phonon coupling function �.k/ governs the coupling strength between
the electron and the phonon-�eld, its decay means that we have only to consider the
small coupling strength, and therefore, we can assume the linear coupling of the Lee–
Low–Pines Hamiltonian (see [31], [32], and [36]) for the unknown interaction Hint

in our modeling. The interaction Hint in the total Hamiltonian HQFT of the material
is concretely determined by several effects of the lattice structure. The lattice struc-
ture makes its own lattice vibration, and then, the lattice vibration makes its own
phonon-�eld. The individual effect, of course, comes from some reasons such as the
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lattice defect as can be seen in the nitrogen-vacancy center in diamond [35] as well
as the lattice’s own vibration. We assume that the estimated coupling function �.k/
almost describes the interaction between the electron and the phonon �eld, and thus,
it includes almost all of those effects, though we actually cannot grasp all of them.

In the light of mathematics, we de�ne a Carleman operator [54] using the esti-
mated dispersion relation !.k/ and the estimated coupling function �.k/, and
then we consider the IR problem with the Carleman operator. As for the use of the
Carleman operator for the IR problem, there is the preceding work byHiroshima [24].
He characterizes the existence of a ground state using the Carleman operator in the
case where any IR divergence does not occur. Conversely, we characterize the IR di-
vergence by the maximal Carleman operator, and moreover, we investigate how the
singularity of the maximal Carleman operator leads to the IR divergence. Then, we
give a criterion for IR problem in terms of the estimated dispersion relation and the
estimated coupling function for small wave numbers close to zero by making good
use of Dereziński and Gérard’s idea.

2 Set-ups in mathematics

2.1 Preliminaries

We here prepare some notion and tools in mathematics to de�ne a self-adjoint opera-
tor called aHamiltonian describing the total energy of a particle coupled with a Bose
�eld.

Let X D .X;A; �/ be a � -�nite measurable space. We denote by Xn n-fold
Cartesian product of X . The measure, d�n.k1; : : : ; kn/, for Xn is naturally de-
�ned by d�.k1/ ˝ � � � ˝ d�.kn/. We de�ne the boson Fock space Fb.L

2.X//

over L2.X/ WD L2.X;A; �/ by
L1
nD0

Nn
s L

2.X/. Here,
Nn

s L
2.X/ is the n-fold

symmetric tensor product ofL2.X/ for each n2Nwith convention
N0

s L
2.X/ WDC.

For every  2 Fb.L
2.X//, we use the expression  D L1

nD0  .n/ D  .0/˚
 .1/ ˚ � � � ˚  .n/ ˚ � � � , where  .n/ 2Nn

s L
2.X/ for each n 2 ¹0º [ N. We often

abbreviate Fb.L
2.X// to FX for simplicity in this paper. We employ the standard

norm k � kFX
in FX . We denote by k � kH the norm of a Hilbert spaceH induced by

its inner product throughout this paper. We de�ne a special vector �X in the boson
Fock space FX by 1˚ 0˚ 0˚ � � � , and call it the Fock vacuum.
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For each n 2 ¹0º [ N and every f 2 L2.X/, we de�ne an operator
aX .f /W

Nn
s L

2.X/ 3  .nC1/ 7�! .aX .f / /
.n/ 2 Nn

s L
2.X/

by

.aX .f / /
.n/.k1; : : : ; kn/ WD p

nC 1

ˆ

X

f .k/ .nC1/.k; k1; : : : ; kn/d�.k/:

We can extend aX .f / to a closed operator acting in FX by extending its domain to®
 2 FX

ˇ̌ P1
nD0 k.aX .f / /.n/k2Nn

s L
2.X/

< 1¯
. We call aX .f / the annihilation

operator. Since we can regard it as an operator-valued distribution, we symboli-
cally write it as aX .f / D ´X f .k/aX .k/d�.k/ with its kernel aX .k/. Meanwhile,

we de�ne the creation operator a�X .f / by aX .f /
�, the adjoint operator of aX .f /.

The kernel of a�X .f / is denoted as a�X .k/ frequently.

Remark 2.1. In the case, for example, where X D Rd , we note that it is dif�cult
to handle aX .k/ and a

�
X .k/ as operators acting in FX (e.g., see Remark 1 of [22]):

The domain of aX .k/� � a
�
X .k/ consists of only the zero vector, and thus, the kernel

aX .k/ of the annihilation operator aX .f / is not closable.

From now on, we denotes by I the identity operator and D.S/ the domain of an
operator S .

Let T be a closable operator densely de�ned in L2.X/. For each n 2 ¹0º [N we
set T .0/ as T .0/ WD 0, and T .n/ as T .n/ WD Pn

jD1 I ˝ � � � ˝ I ˝ T ˝ I ˝ � � � ˝ I ,

where T sits on the j -th. We denote by S the closure of a closable operator S . Then,
we de�ne an operator d�X .T / acting in FX by

L1
nD0 T .n/. We call d�X .T / second

quantization of T . For the second quantization the following facts are well known.

I. If T ¤ 0, then d�X .T / is unbounded.

II. If T is self-adjoint, then d�X .T / is also self-adjoint.

III. Let T be non-negative, injective, and self-adjoint. Then, the inclusion relation,
D.d�X .T /

1=2/ � D.aX.f //\D.a�X.f //, holds for for every f 2 D.T�1=2/.
In addition to this inclusion relation, the following inequalities hold for every
 2 D.d�X .T /1=2/:

ka]X .f / kFX
� kT �1=2f kL2.X/kd�X .T /1=2 kFX

C c]kf kL2.X/k kFX
;

where c] D 0 if a]X .f / D aX .f /; c] D 1 if a]X .f / D a
�
X .f /. In particular, we

de�ne the number operatorNX by d�X .1/. Here 1 stands for the multiplication
operator of the constant function 1.k/ � 1 of k 2 X .
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Suppose now that X can be decomposed into the disjoint union of X1 and X2.
Then, L2.X/ is also decomposed into the direct sum of L2.X1/ and L2.X2/. The
following is well known. There is a unique unitary operator

U WFX � Fb.L
2.X// �! FX1

˝ FX2
� Fb.L

2.X1//˝ Fb.L
2.X2//

such that

IV.-a) the unique unitary operator U gives U�X D �X1
˝ �X2

for the individual
Fock vacuums, �X 2 FX ; �X1

2 FX1
and �X2

2 FX2
;

IV.-b) U d�X .h/ D d�X1
.h1/˝ I C I ˝ d�X2

.h2/ for the decomposition h D
h1 ˚ h2, where h acts in L2.X/ and hj in L2.Xj /, j D 1; 2, respectively.

Let V be a separable Hilbert space. We denote its inner product and norm by
.�; �/V and k � kV, respectively. Then, for each n 2 N we de�ne the Hilbert space
L2sym.X

nIV/ of all square-integrable, V-valued, symmetric functions. We say that
f WXn ! V is measurable if .v; f .�//VWXn ! C is measurable for every v 2 V.
It is known that

V. the two spaces, V ˝ FX and
L1
nD0L2sym.XnIV/, are unitarily equivalent, that

is, there is a unitary operator

UVWV ˝ FX �! L1
nD0L2sym.XnIV/

with convention L2sym.X
0IV/ WD V.

Through this unitary transformation UV, for every ‰ 2 V ˝ FX we denote UV‰

by ‰
V
. Moreover, ‰

V
is often expressed by

LP1
nD0‰

.n/
V

D ‰
.0/
V

˚‰
.1/
V

˚ � � � ˚ ‰
.n/
V

˚ � � � ;

where ‰.n/
V

2 L2sym.XnIV/ for each n 2 ¹0º [ N. Therefore, the norm k‰VkV˝FX

is
q

k‰.0/
V

k2
V

CP1
nD1 k‰.n/

V
k2
L2.XnIV/.

It is easy to give a small generalization of Corollary 5.1 in [22]:

Proposition 2.2. Let ¹f
`
º1
`D1 be an arbitrary complete orthonormal system ofL

2.X/.

Then, the equation, kI ˝ N
1=2
X ‰k2

V˝F
X

D P1
`D1 kI ˝ aX.f`/‰k2

V˝F
X
, holds for

every ‰ 2 D.I ˝N
1=2
X /.
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As a special case of Proposition 2.2, we have

Corollary 2.3 (Proposition 5.1 in [22]). Let ¹f
`
º1
`D1 be an arbitrary complete or-

thonormal system of L2.X/. Then kN 1=2
X  k2

FX
D P1

`D1 kaX .f`/ k2
FX
, holds for

every  2 D.N 1=2
X /.

This equation is symbolically written as

kN 1=2
X  k2F

X
D
ˆ

X

kaX.k/ k2F
X
d�.k/

using the kernel aX .k/.

2.2 De�nition of general Hamiltonian

Let us suppose that the state space of a particle set in a quantum �eld by a separable,
complex Hilbert space H, and the quantum �eld’s momenta are in Rd . Only when
X D Rd , we use the abbreviation, Fb WD F

Rd � Fb.L
2.Rd //. Corresponding to

this abbreviation, we abbreviate aRd .f /, a�
Rd .f /, and d�Rd .h/ to ab.f /, a

�
b .f /,

and d�b.h/, respectively. In particular, we often use the notation Nb for d�b.1/.
The total state space of the particle coupled with the Bose �eld is given by F WD
H ˝ Fb. We denote I ˝ ab.f / and I ˝ a

�
b .f / by a.f / and a�.f /, respectively.

LetA be a self-adjoint operator acting inH bounded from below. We suppose that
this describes the energy of the particle. The phonon-�eld is among Bose �elds, and
thus, we are interested in the massless Bose �eld case. Since we focus on the IR be-
havior around the 0 wave length in this paper, we suppose an idealization for the dis-
persion relation !.k/ for the massless Bose �eld, namely, we assume that the disper-
sion relation !WRd �! Œ0 ; 1 / is a continuous function such that 0 < !.k/ < 1
for every k 2 Rd n ¹0º and infjkj>" !.k/ > 0 for every " > 0. The unperturbed
Hamiltonian of our model is de�ned by H0 WD A ˝ I C I ˝ d�b.!/ with do-
main D.H0/ WD D.A ˝ I / \ D.I ˝ d�b.!// � F. The operator H0 is self-
adjoint and bounded from below. We suppose that our total Hamiltonian has the
form, HQFT WD H0 CHint, and we always assume HQFT to be a self-adjoint operator
acting in F in this paper. We then suppose thatHint describes the interaction between
the particle and the Bose �eld. Our purpose is to extrapolate this unknown interaction
operator Hint.

Let ker.S/ stand for the kernel of an operator S . In addition, when S is closed,
let us denote by �.S/ the spectrum of a closed operator S .
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De�nition 2.4. By ground state energywemean inf �.HQFT/, the lowest spectrum of
HQFT. We denote the ground state energy by E0.HQFT/. We sayHQFT has a ground
state ‰QFT if 0 ¤ ‰QFT 2 ker.HQFT �E0.HQFT//. We say‰QFT to be normalized if
k‰QFTkF D 1.

For simplicity, we denote HQFT � E0.HQFT/ by yHQFT. We always suppose that
the ground state ‰QFT has been normalized whenever it exists.

2.3 From Dereziński–Gérard’s idea

When we estimate the ground-state expectation
�
‰QFT ; N‰QFT

�
F
of the total num-

ber of bosons, where N is the boson number operator de�ned by I ˝ d�b.1/, it is
convenient to use the following symbolical equation:

kN 1=2‰QFTk2F D
ˆ

Rd

ka.k/‰QFTk2Fdk; (1)

where a.k/ denotes the kernel of the annihilation operator a.f /. Its established
meaning in operator theory is given by Proposition 2.2. On the other hand, when
the integrand ka.k/‰QFTk2

F
in (1) has a singularity at k D 0, whether RHS of (1)

converges is not certain. So, in such a case, we employ the equation corresponding
to the following symbolical expression instead of (1):

kN 1=2
>" ‰QFTk2F D

ˆ

jkj>"
ka.k/‰QFTk2F dk (2)

for every " > 0, where N" is the number operator de�ned as the second quantiza-
tion of 1>", the constant function 1.k/ D 1 cut off within the radius of " from the
origin. Thus, by taking " ! 0 in (2), we can investigate the IR problem. This is the
Dereziński–Gérard’s idea and an interpretation of [9] (equation (2.9) of Lemma 2.6)
which we adopt in our method, though they did not clearly write it in [9].

3 Domain of the Carleman operator and IR problem

When a ground state ‰QFT of the total Hamiltonian HQFT exists, we consider the
F-valued function KPTWRd n ¹0º ! F satisfying

a.f /‰QFT D �
ˆ

Rd

f .k/KPT.k/dk (3)



380 M. Hirokawa

for every f 2 C1
0 .R

d n ¹0º/. To guarantee the existence of such the function, we
here assume the following conditions.

1) There exists an operator BPT.k/ for every k 2 Rd n ¹0º such that the F-valued
function BPT.�/‰ is continuous for every ‰ 2 D.H0/. That is, D.BPT.k// �
D.H0/ for every k 2 Rd n¹0º and .ˆ; BPT.�/‰/FWRdn¹0º �! C is a continuous
function for every ˆ 2 F.

2) The operator . yHQFT C !.k//�1BPT.k/ is bounded and

KPT.k/ D . yHQFT C !.k//�1BPT.k/‰QFT (4)

for every k 2 Rd n ¹0º, and then, for every " > 0,

M" WD
²
ˆ

jkj>"
k. yHQFT C !.k//�1BPT.k/k2B.F/dk

³1=2

< 1;

where k � kB.F/ denotes the operator norm of B.F/, the C �-algebra of bounded
operators on F.

According to theory of physics, the operator BPT.k/ should be Œa.k/;HQFT� D
Œa.k/;H0�C Œa.k/;Hint�, but the interactionHint is unknown now. Thus, we estimate
BPT.k/ using the estimated coupling function �.k/ as well as making theoretical
argument in physics. How to estimate it will be in the next section.

For every " � 0, we respectively give Rd<" and Rd>" by ¹k 2 Rd j jkj < "º
and ¹k 2 Rd j jkj > "º, where Rd<0 D ;. For every f 2 L2.Rd / we set f <" as
1<".k/f .k/, and f >" as 1>".k/f .k/ in L2.Rd /, where 1<" and 1>" are character-
istic functions:

1<".k/ WD
´
1 if jkj < ";
0 otherwise;

and 1>".k/ WD
´
1 if jkj > ";
0 otherwise:

Since we can regard f <" (resp. f >") as a function inL2.Rd<"/ (resp.L2.Rd>"/),
we often handle it as f <" 2 L2.Rd<"/ (resp. f >" 2 L2.Rd>"/) in this paper. Ac-
cording to this decomposition, we introduce some abbreviations:

d�<".h<"/ WD d�
R

d
<"
.h<"/; d�>".h>"/ WD d�

R
d
>"
.h>"/;

a
]
<".f

<"/ WD a
]

R
d
<"

.f <"/; a
]
>".f

>"/ WD a
]

R
d
>"

.f >"/;

where a]X denotes aX or a�X .
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Since Rd D Rd<" ˚ ¹k 2 Rd j jkj D "º ˚ Rd>" and the Lebesgue measure of
the set ¹k 2 Rd j jkj D "º is equal to 0, we have L2.Rd / D L2.Rd<"/˚ L2.Rd>"/.
So, by Fact IV, there exists a unitary operator U" for every " > 0 such that

U"F D H ˝ F
R

d
<"

˝ F
R

d
>"

� H ˝ Fb.L
2.Rd<"//˝ Fb.L

2.Rd>"//:

We denote U"F by F". Write U"‰ 2 F" as ‰" for every ‰ 2 F. Then, Fact IV.-b)
leads to the relation:

U".I ˝ d�b.h//U
�
" D I ˝ d�<".h<"/˝ I C I ˝ I ˝ d�>".h>"/

for every real-valued Lebesgue-measurable function hWRd ! R.
Symbolically we give the ground-state expectation hOigs for an operatorO acting

in F by .‰QFT; O‰QFT/F. Here we recall that ‰QFT is normalized. Then, we can
consider hOigs to be �nite if ‰QFT 2 D.O/, on the other hand, to be in�nite if
‰QFT … D.O/. Here we also write ‰QFT … D.O/ when ‰QFT does not exist in F.
That is, hOigs < 1 if ‰QFT 2 D.O/; hOigs D 1 if ‰QFT … D.O/ or ‰QFT does
not exist in F.

De�nition 3.1. We say the soft boson (SB) divergence takes place if‰QFT … D.N 1=2/,
and the infrared (IR) catastrophe occurs if ‰QFT does not exist in F.

Remark 3.2. Since D.N/ � D.N
1=2/, the naive meaning of the soft boson diver-

gence in De�nition 3.1 is symbolically: hN igs D kN 1=2‰QFTk2
F

D 1.

For every " > 0, we de�neN>" acting in F byU �
" .I˝I˝ d�>".1>"//U". Then,

we can easily obtain the following lemma:

Lemma 3.3. D.H0/ � T
">0D.N

1=2
>" /:

To �nd a relation between N and N>", we introduce the domain,

DCNB WD
°
‰ 2

\

">0

D.N
1=2
>" /

ˇ̌
ˇ sup
">0

kN 1=2
>"‰k2F < 1

±
:

The following lemma is a mathematical establishment of (2).

Lemma 3.4. Let ¹f >"
`

º1
`D1 be an arbitrary complete orthonormal system ofL

2.Rd>"/

for every " > 0. Then, the equation, kN 1=2
>"‰k2

F
D P1

`D0 ka.f >"
`
/‰k2

F
, holds for

every ‰ 2 D.N 1=2
>" /.
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The following lemma gives a relation between N and N>". It tells us that for all
vectors ‰ 2 D.H0/ we can check whether .‰ ; N‰/F converges by making good
use of Lemma 3.3 and estimating sup">0 kN 1=2

>"‰k2
F
. Thus, the following lemma

plays an important role to prove Theorems 3.7 and 3.8 below.

Lemma 3.5. We have

DCNB D D.N
1=2/

and

sup
">0

kN 1=2
>" ‰k2F D kN 1=2‰k2F

for ‰ 2 DCNB.

We here introduce two notions of the Carleman operator (see §6.2 of [54]): Let
� be a Lebesgue-measurable space of Rd . A linear operator T from a Hilbert space
V into L2.�/ is called the Carleman operator if there exists a function kW� ! V

such that .T v/.x/ D .k.x/; v/V (a.e. x 2 �) for all v 2 D.T /. If

D.T / D ¹v 2 V j .k.�/; v/V 2 L2.�/º;

then T is called the maximal Carleman operator.
When a ground state ‰QFT of HQFT exists, we assumed the existence of the F-

valued functionKPTWRd n¹0º ! F given by the operator BPT.k/ as in (4). We make
the following de�nition:

De�nition 3.6. For the ground state‰QFT, we de�ne themaximal Carleman operator
TPTWF ! L2.Rd / induced by KPT by

D.TPT/ WD ¹ˆ 2 F j .KPT.�/; ˆ/F 2 L2.Rd /º;
.TPTˆ/.k/ WD .KPT.k/; ˆ/F; ˆ 2 D.TPT/;

for every k 2 Rd n ¹0º. Then, we call KPT the inducing function of TPT. We
say that the maximal Carleman operator TPT has the IR singularity at k D 0 if
limk!0 j .TPTˆ/ .k/j D 1.

We note that TPT is closed by Theorem 6.13 in [54].

We can slightly modify Theorem 2.9 in [24] to meet our interests, and we can
restate it in terms of the maximal Carleman operator.
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Theorem 3.7. Assume D.HQFT/ D D.H0/ and there exists a ground state ‰QFT of
the Hamiltonian HQFT. Then, the following conditions are equivalent:

(i) ‰QFT 2 D.N 1=2/;

(ii) kKPT.�/kF 2 L2.Rd /;
(iii) TPT is a Hilbert–Schmidt operator.

If one of them holds, then kTPTk � M0 WD lim"!0M" < 1.

The above theorem can be proved by obeying the Dereziński–Gérard idea men-
tioned in §2.3 and making good use of Lemma 3.5, and tells us that D.TPT/ D F

if ‰QFT exists in D.N 1=2/. Thus, it is trivial that D.N 1=2/ � D.TPT/ in this case.
But, more generally, we have this inclusion relation in the following theorem, even
though ‰QFT exists outside D.N 1=2/:

Theorem 3.8. Suppose that D.HQFT/ D D.H0/. If a ground state ‰QFT of the
Hamiltonian HQFT exists, then D.TPT/ � D.N

1=2/.

This theorem is also proved by making good use of Lemma 3.5, and gives a suf-
�cient condition of the SB divergence:

Corollary 3.9. Suppose that D.HQFT/ D D.H0/. If ‰QFT … D.TPT/, then the SB
divergence takes place.

Thus, the next problem is when‰QFT is not inD.TPT/ if‰QFT exists. Theorem 4.6
below deals with this question in the case where TPT has an IR singularity. To prove
Theorem 4.6, we need the following theorem:

Theorem 3.10. SupposeD.HQFT/ D D.H0/. Assume a function � onRd represents
IR singularity of TPT as the following (1)–(3):

(1) there is an "0 > 0 such that �.k/ ¤ 0 for every k 2 Rd with 0 < jkj < "0;
(2) �=! … L2.K/ for every neighborhood K of k D 0;

(3) there is an operator B0.0/ acting in F such that �.k/�1BPT.k/ converges to
B0.0/ onD.H0/ as k ! 0.

If there exists a ground state ‰QFT such that

1

!.�/.ˆ; .
yHQFT C !.�//�1 yHQFTBPT.�/‰QFT/F 2 L2.Rd /

for a vector ˆ 2 D.TPT/, then .ˆ; B0.0/‰QFT/F D 0.
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4 IR singularity and Carleman operator

In this section we suppose that we can estimate the dispersion relation !.k/ of phonon
and the coupling function �.k/ from the experimental data. We here show how to
de�ne the operator BPT.k/ in the inducing function KPT.k/ of the Carleman oper-
ator TPT. We theoretically estimate and approximate the ideal form of the interac-
tion between an electron and a phonon-�eld (see [6], [29], and [28]) so that the ap-
proximated interaction H theo

int does not have information about the coupling strength.
We then set an operator B0.k/ as B0.k/ D Œa.k/;H theo

int �. Here we do not mind the
coupling strength because we make an estimated coupling function �.k/ play its role
as in the condition (S1) below. We know the IR dif�culty may take place in a case
where the dispersion relation !.k/ satis�es !.k/ ! 0 as k ! 0. So, to avoid IR
divergence, the estimated coupling function �.k/ has to lessen the effect of the decay.
Meanwhile, equations (3) and (4) together with Proposition 2.2 say that the operator
BPT.k/ plays the role of lessening the decay of the dispersion relation !.k/. Thus,
we de�ne the operator BPT.k/ by using the estimated coupling function �.k/ and the
theoretically approximated operator B0.k/. We assume that the coupling function
�.k/ satis�es the condition (1) of Theorem 3.10 and that the approximated operator
B0.k/ satis�es:

(S1) BPT.k/ D �.k/B0.k/ onD.H0/ for every k 2 Rd n ¹0º;
(S2) B0.k/‰ ! B0.0/‰ in F as k ! 0 for every ‰ 2 D.H0/.

We reinterpret the IR singularity condition (see [3] and [4]) as the condition in
the neighborhood of k D 0:

De�nition 4.1. We say that ! and � satisfy the IR singularity condition if there are
constants 1; 2; "2 > 0 with 1 < 2 such that �=.! / 2 L2.Rd / for every  with
 < 1, and �=.! / … L2.Rd<"/ for every  with  > 2 and every " with "2 � " > 0.
We say that  is in the IR-safe region (resp. the IR-divergent region) if  < 1 (resp.
 > 2). In particular, we call c the order of the IR singularity condition when
1 D 2 D c and �=.!c / … L2.Rd<"/ for every " with "2 � " > 0. In this case,
we also say  D c is in the IR-divergent region.

We say a symmetric operator S strongly commutes withHQFT if

eitHQFTS � SeitHQFT for all t 2 R.

Then, we can derive the following theorem from Theorem 3.8. This is a generaliza-
tion of Dereziński and Gérard’s Lemma 2.6 in [9] and ours Theorem 3.4 in [4].
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Theorem 4.2. Suppose D.HQFT/ D D.H0/. Assume ! and � satisfy the IR singu-
larity condition with the order c less than or equal to 1 (i.e., c � 1). Assume that a
ground state ‰QFT satis�es:

(1) B0.0/ is symmetric and strongly commutes with HQFT;

(2) there is a  in the IR-safe region such that

sup
k2supp zB0

!.k/�1k.B0.k/ � B0.0//‰QFTkF < 1;

where zB0.k/ WD B0.k/ � B0.0/.
Then, the ground state satis�es B0.0/‰QFT ¤ 0.

Proof. We suppose that the ground state ‰QFT satis�es (1) and (2). For all ˆ 2
D.N

1=2/ and every k 2 Rd n ¹0º we have

.KPT.k/; ˆ/F D �.k/.. yHQFT C !.k//�1B0.0/‰QFT ; ˆ/F

C �.k/.. yHQFT C !.k//�1.B0.k/ � B0.0//‰QFT; ˆ/F

D �.k/

!.k/
.B0.0/‰QFT; ˆ/F

C �.k/.. yHQFT C !.k//�1.B0.k/ � B0.0//‰QFT; ˆ/F

by (1). This equation implies

0 � j.B0.0/‰QFT; ˆ/Fj2
ˆ

jkj>"
j�.k/j2
!.k/2

dk

� 2

ˆ

Rd

j .KPT.k/ ; ˆ/F j2dk

C 2kˆk2F. sup
k2supp zB0

!.k/�1k.B0.k/ � B0.0//‰QFTkF/2
ˆ

Rd

j�.k/j2
!.k/2

dk:

Here we note that the �rst integral of RHS is �nite by Theorem 3.8, and the sec-
ond one is also �nite for the  in (2). In addition, they are independent of every
" 2 .0; "2/. Taking " ! 0, Lebesgue’s monotone convergence theorem tells us that
.B0.0/‰QFT; ˆ/ is bound to be 0 (i.e., .B0.0/‰QFT; ˆ/ D 0) for all ˆ 2 D.N

1=2/

since �=! … L2.Rd /. Since D.N 1=2/ is dense in F, we reach B0.0/‰QFT D 0

�nally.
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We can obtain Dereziński and Gérard’s result (Lemma 2.6 in [9]) as a corollary
of Theorem 4.2:

Corollary 4.3. Let D.HQFT/ D D.H0/. Suppose that there are functions g.k/ and
Jerr.k/ with supp g � supp Jerr such that BPT.k/ can be decomposed into

BPT.k/ D g.k/I ˝ I C Jerr.k/

on D.H0/ for every k 2 Rd n ¹0º. Assume the following (1)–(3):
(1) g=! … L2.Rd /;

(2) g=.!
0 / 2 L2.Rd / for a 0 with 0 < 0 < 1;

(3) g.k/�1Jerr.k/‰ ! 0 as k ! 0 for every ‰ 2 D.H0/.

Then, there is no ground state ‰QFT satisfying

sup
k2suppJerr

!.k/0
�1g.k/�1kJerr.k/‰QFTkF < 1:

Proof. Set �.k/ WD g.k/ and B0.0/ WD I ˝ I . We B0.k/ by

B0.k/ WD g.k/�1Jerr.k/C I ˝ I

for every k 2 supp Jerr with k ¤ 0; by B0.k/ WD I ˝ I for other k ¤ 0. The only
thing we have to do is applying Theorem 4.2.

As a corollary of Theorem 4.2 we also obtain Theorem 3.4 in [4] of which state-
ment can be applied to several models.

Corollary 4.4. Suppose D.HQFT/ D D.H0/ and there is an operator CPT with
D.CPT/ � D.H0/ such that B0.k/ D CPT on D.H0/ for all k 2 Rd . Assume
the following (1)–(3):

(1) �=! … L2.Rd /;

(2) �=.!
0 / 2 L2.Rd / for a 0 with 0 < 0 < 1;

(3) CPT is symmetric and strongly commutes withHQFT.

Then, there is no ground state ‰QFT satisfying CPT‰QFT ¤ 0.
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We make another statement for our concrete case in (7) below.

Theorem 4.5. Suppose D.HQFT/ D D.H0/ and B0.0/ is symmetric and strongly
commutes withHQFT. Assume there is an "0 > 0 and operatorsBj .k/, j D 1; : : : ; d ,
acting in F for every k 2 Rd n ¹0º such that B0.k/‰QFT is decomposed into

B0.k/‰QFT D B0.0/‰QFT C
dX

jD1
kjBj .k/‰QFT

for jkj < "0. If ! and � satisfy the IR singularity condition with the order c, and
moreover,

ˆ

jkj<"0

jkj j j�.k/j2
!.k/1C dk < 1

for a  > 0 with  < c < .1C/=2 and j D 1; : : : ; d , then there is no ground
state ‰QFT satisfying B0.0/‰QFT ¤ 0 and supjkj<"0

kBj .k/‰QFTkF < 1 for all
j D 1; : : : ; d .

Proof. We use the reduction to absurdity. So, we suppose that there is such a ground
state ‰QFT. Let us �x ˆ 2 D.N 1=2/ arbitrarily and de�ne a function Fˆ.k/ by

Fˆ.k/ WD .KPT.k/ ; ˆ/F:

We de�ne another function F .k/ by

F .k/ WD �.k/!.k/� :

Then, we have Fˆ 2 L2.Rd / by Theorem 3.8 and F 2 L2.Rd / by our assumption.
For every " with " < min¹"0; "2º DW "0 ^ "2, where "2 is in De�nition 4.1, we have

ˆ

"<jkj<"
0
^"

2

Fˆ.k/F .k/dk

D .B0.0/‰QFT; ˆ/F

ˆ

"<jkj<"
0

^"
2

j�.k/j2
!.k/1C dk

C
dX

jD1

ˆ

"<jkj<"
0
^"

2

kj j�.k/j2
!.k/

.. yHQFT C !.k//�1Bj .k/‰QFT; ˆ/F dk:

(5)
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In the �rst term of RHS of the above, we used the assumption that B0.0/ commutes
with HQFT. We can estimate the last integrals as

ˇ̌
ˇ̌
ˆ

"<jkj<"
0

^"
2

kj j�.k/j2
!.k/

.. yHQFT C !.k//�1Bj .k/‰QFT; ˆ/F dk

ˇ̌
ˇ̌

� kˆkF sup
jkj<"0

kBj .k/‰QFTkF
ˆ

jkj<"0

jkj j j�.k/j2
!.k/1C dk

< 1:

(6)

Combining (5) and the inequality (6) gives us the inequality

0 � j.B0.0/‰QFT; ˆ/Fj
ˆ

"<jkj<min¹"
0
;"

2
º

j�.k/j2
!.k/1C dk

� kFˆkL2.Rd /kFkL2.Rd /

C kˆkF
dX

jD1
sup

jkj<"0

kBj .k/‰QFTkF
ˆ

jkj<"0

jkj j j�.k/j2
!.k/1C dk

< 1:

Taking " ! 0, Lebesgue’s monotone convergence theorem tells us that the inner
product .B0.0/‰QFT; ˆ/F is bound to be 0 (i.e., .B0.0/‰QFT; ˆ/F D 0) for all
ˆ 2 D.N

1=2/ since �=.!.1C/=2/ … L2.Rd /. Since D.N 1=2/ is dense in F, we reach
B0.0/‰QFT D 0 �nally. This is a contradiction.

The following theorem follows from Theorem 3.10:

Theorem 4.6. Assume D.HQFT/ D D.H0/ and �=! … L2.K/ for every neigh-
borhood K of k D 0. Then, there is no ground state ‰QFT in D.TPT/ satisfying
hB0.0/igs ¤ 0. Thus, in particular, if B0.0/‰ ¤ 0 for every ‰ 2 D.H0/ with
‰ ¤ 0, then no ground state exists in D.TPT/, and thus, the SB divergence takes
place.

Proof. Let us suppose there is a ground state ‰QFT inD.TPT/ now. We easily have

1

!.�/.‰QFT; . yHQFT C !.�//�1 yHQFTBPT.�/‰QFT/F D 0:

Thus, it follows immediately from Theorem 3.10 that hB0.0/igs D 0, which means
our theorem holds.
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5 Extrapolation of electron–phonon interaction

In this section, we consider the concrete approximated interaction H theo
int , and then,

we investigate the conditions between the estimated dispersion relation !.k/ and the
estimated coupling function �.k/ for the IR problem.

As the operator A in the free Hamiltonian H0, we employ a Hamiltonian Hat

given by the Schrödinger operator, Hat � 1=2 p2 C V , acting in H D L2.Rd /,
where p WD �irx is the momentum of the electron, and V a potential. We use the
natural units here. As in [22] we consider potentials V in the class either (N1-1)
or (N1-2) below. Here we say that V is in class (N1-1) – resp. (N1-2) – if the fol-
lowing conditions, (N1-1-1) and (N1-1-2) (see [1]) – resp. (N1-2-1) and (N1-2-2)
(see [50]) – hold. These conditions are set so that if V is in class (N1-1) or (N1-2),
thenHat becomes a self-adjoint operator bounded from belowwithD.Hat/ � D.p2/,
andmoreover,Hat has a ground state at. Whenwe say thatwe assume (N1), wemean
that either (N1-1) or (N1-2) is assumed.

(N1-1-1) Hat is self-adjoint onD.Hat/ � D.p2/\D.V / and bounded from below.

(N1-1-2) There exist positive constants c1 and c2 such that jxj2 � c1V.x/C c2 for
almost every (a.e.) x 2 Rd , and

´

jxj�R jV.x/j2dx < 1 for all R > 0.

(N1-2-1) V 2 L2.Rd /C L1.Rd / and limjxj!1 jV.x/j D 0.

Following [41] (Theorem X15) and [42] (§XIII.4, Example 6) the condition (N1-2-1)
implies that Hat is self-adjoint on D.p2/; V is in�nitesimally p2-bounded; and the
essential spectrum �ess.Hat/ ofHat is equal to Œ0 ; 1/ . So, we assume the following
in addition:

(N1-2-2) Hat has a ground state  at satisfying  at.x/ > 0 for a.e. x 2 Rd and
Eat WD inf �.Hat/ < 0.

In order to de�ne the interaction Hamiltonian Hint of the models, we use the fact
that F is unitarily equivalent to the constant �ber direct integral L2.Rd IFb/, i.e.,

F � L2.Rd /˝ Fb Š L2.Rd IFb/ �
ˆ ˚

Rd

Fbdx

(see [42] and [47]). Throughout this section, we identify F to the constant �ber direct
integral, i.e., F D ´˚

Rd Fbdx.
To lessen the decay of the estimated dispersion relation, !.k/ ! 0 as k ! 0, in

the IR problem, the estimated coupling function �.k/ also has to decay, �.k/ ! 0

as k ! 0. Namely, the coupling strength j�.k/j is very small in the neighborhood
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of k D 0. This suf�ciently small coupling strength usually allows us to consider
the �rst-order approximation, i.e., the linear coupling between the particle and the
phonon-�eld. We assume that the true coupling function �.k/ can be well approxi-
mated by a function �app.k/ and a coupling constant q for small wave number jkj, and
then, the estimated coupling function �.k/ can be obtained as �.k/ D q1<ƒ�app.k/.

For a measurable function �app.k/ satisfying 1<ƒ�app 2 L2.Rd /, we give our
extrapolated interaction Hint by the so-called Fröhlich interaction [14]. Thus, sym-
bolically using the kernels of the annihilation and creation operators, the extrapolated
interaction is

Hint D
ˆ

Rd

�.k/.e�ikxa.k/C e�ikxa�.k//dk;

where

H theo
int D

ˆ

Rd

.eikxa.k/C e�ikxa�.k//dk:

We mathematically assume the following:

(N2) 1<ƒ�app, 1<ƒ �app=
p
! 2 L2.Rd /.

The total Hamiltonian HQFT in our mathematical modeling is

HQFT D Hat ˝ I C I ˝Hb C q

ˆ ˚

Rd

¹a.1<ƒ�appe�ikx/C a�.1<ƒ�appe
�ikx/ºdx

acting in F, see [31] and [32]. Then, we call this HQFT the Lee–Low–Pines (LLP)
Hamiltonian in this paper, though it is called the Pauli–Fierz Hamiltonian for non-
relativistic quantum electro dynamics (NQED) in [9], [16], and [17]. That is, we are
interested in the model describing polaron [36] in the solid state physics.

Remark 5.1. Roughly speaking, phonon in amaterial is the quantization of the lattice
vibration of the material. The vibration makes a wave, and then, the wave has the
relation between its frequency ! and its wave number vector k. This is the so-called
dispersion relation, ! D !.k/. After the quantization of this vibration, through the
Einstein–planck formula, the dispersion relation !.k/ and the phonon number n.k/
gives the energy E D „n.k/!.k/ of the phonon with the momentum „k given by
the de Broglie formula. Thus, each dispersion relation !.k/ is determined for the
individual property of the material. The true coupling function �.k/ also depends
on the material property, and we estimate it at our estimated coupling function �.k/.
Consider an electron put in a material now. For instance, suppose that the material
is a crystal. The electron in the material is negatively charged and thus is attracted
by a plus-charged source which is caused by the positively charged ion cores caused
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by, for instance, the crystal lattice deformation (§10.3 of [27]), also called the crystal
lattice distortion [12]. Thus, we can suppose that the electron’s speed decreases.
Namely, we regard the electron as non-relativistic, and employ such Hat with V as
satis�es our assumptions. This observation leads to our total Hamiltonian HQFT.

As in [22], we have the following assertion:

Proposition 5.2. Assume .N1/ and .N2/. Then,HQFT is self-adjoint withD.HQFT/

D D.H0/ �D.Hat ˝ I /\D.I ˝ d�.1//. H is bounded from below for arbitrary
values of q.

Once we assume the existence of a ground state, it has to have the property of the
spatial localization as stated in Propositions 5.3 and 5.4 below.

In the same way as in Proposition 6.1 in [22] we can prove the following:

Proposition 5.3. Assume (N1-1) and (N2). If HQFT has a ground state ‰QFT, then
‰QFT 2 D.x2 ˝ I /.

In the same way as in Proposition 6.3 in [22], obeying the idea in [21] with a little
modi�cation to meet our models, we have the following:

Proposition 5.4. Assume (N1-2) and (N2). If HQFT has a ground state ‰QFT, then
there is C0 > 0 such that ‰QFT 2 D.eC0jxj/.

The following operator-theoretical pull-through formula can be proved in the
same way as in Proposition 3.1 in [22]:

Proposition 5.5. Assume (N1) and (N2). Then, for all f 2 C1
0 .Rd n ¹0º/,

a.f /‰QFT D � q
ˆ

Rd

f .k/�app.k/. yHQFT C !.k//�1e�ikx‰QFT dk;

supp f � supp 1<ƒ and ‰QFT 2 D.x2 ˝ I /. Therefore, BPT.k/ is the product of
�.k/ D q1<ƒ.k/�app.k/ and B0.k/ D e�ikx ˝ I .

To consider the problem of the mathematical modeling mentioned in Section 1,
we give a concrete situation of!.k/ and �.k/ here. Foreseeing from the experimental
data that the phonon has the decay of the dispersion relation as the wave number goes
to zero, it is dif�cult to estimate the decay order only from the data (see, for example,



392 M. Hirokawa

�gures of the estimated phonon dispersion relation in [8], [11], [34], [45], [48], [49],
[55], and [58]). Thus, we here consider a mathematical method to do that in the
light of the IR problem. Through a simpli�cation and an idealization, let us set !.k/
and �.k/ as continuous functions on .0; ƒ� , and assume that there exist constants,
�; � > 0, such that

!.k/ � jkj� and �.k/ � jkj� as jkj ! 0 (7)

because we are interested in IR situation around k D 0. Then, we have

c D d C 2�

2�
: (8)

The condition, d � 2.� � �/, implies �=! … L2.Rd /. A suf�cient condition so
that we can obtain 0 in the assumption (2) of Corollary 4.3 is d > 2.� � � � 1/ as
shown in the proof of (iii) of Theorem 5.6 below. So, sinceHQFT should be de�ned to
be self-adjoint, a suf�cient condition so that Corollary 4.3 (Dereziński and Gérard’s
result [9]) works together with the Kato–Rellich theorem [41] is

max
°�
2

� �; � � � � 1
±
<
d

2
� � � �: (9)

The dimension d has haven a restriction from below if we use Corollary 4.3. How-
ever, since �=2 � � < � � � � 1 if and only if � > 2, there is a possibility that
�=2 � � < d=2 < � � � � 1 when � > 2. Thus, Corollary 4.3 does not work in this
case. We try to remove this restriction in the case � > 2 by using Theorem 4.5 from
now on.

Let us take � with 2 < � now. If  and � satisfy

8
<̂

:̂

0 <  < 1� 2

�
;

d

2
� 1C 

2
� � �� < d C 1

2
� 1C 

2
�;

(10)

then we have

� � � <
1C 

2
� � � � 1

2
<
d

2
� 1C 

2
� � � < � � � � 1: (11)

Namely, d; � and � do not satisfy the condition (9) under (10). But we have the
following criterion.
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Theorem 5.6 (criterion for SB Divergence and IR catastrophe). Suppose that HQFT

is self-adjoint. Set the estimated dispersion relation !.k/ and the estimated coupling
function �.k/ as (7). Assume that � � 2� < d . Let V is in class (N1) and (N2).
Then, the following (i)–(iv) hold.

(i) If �� � < d=2, then the SB divergence does not take place, and moreover, there
is a constant q0 2 R [ ¹1º such that ground state exists in F for every q with
jqj < q0.

(ii) If � � � � d=2, then the SB divergence takes place.

(iii) If d; �; � satisfy (9), then the IR catastrophe occurs.

(iv) Set  WD 2c � 1, where c is in (8). If � > 2 and 1 � � < �� < .d��/=2,
then (10) holds and the IR catastrophe occurs.

Proof. We note that the condition � � � < d=2 implies �=! 2 L2.Rd /. Hence
kKPT.�/kF 2 L2.Rd / follows from this condition. Thus, Theorem 3.7 tells us that
‰QFT 2 D.N

1=2/ if ‰QFT exists. Namely, IR catastrophe does not occur. The exis-
tence of a ground state‰QFT is due to Spohn’s result [50]. Thus, part (i) is completed.
Part (ii) follows from Theorems 3.8 and 4.6.

To prove part (iii) we use the reduction of absurdity. Suppose that there is a ground
state‰QFT. The inequality d=2 � ��� in (9) implies that c � .dC2�/=2 � � 1. Thus,
1 is in the IR-divergent region. Moreover, we have 1���1 < c by �� �� 1 < d=2

in (9). Thus, every 0 with 1���1 � 0 < c is in the IR-safe region. Proposition 5.5
says that BPT.k/D�.k/B0.k/ with �.k/Dq1<ƒ.k/�app.k/ and B0.k/De�ikx ˝ I .
Taking g.k/ D �.k/ and Jerr.k/ D �.k/.e�ikx � 1/˝ I in Corollary 4.3 shows that
assumptions (1)–(3) of Corollary 4.3 are satis�ed. Moreover, since 1 � ��1 � 0
implies .0 � 1/�C 1 � 0, there are positive constants Kƒ and Cƒ such that

sup
k2suppJerr

!.k/0
�1�.k/�1kJerr.k/‰QFTkF

� jKƒj.0
�1/�C1k .jxj ˝ I /‰QFTkF C Cƒ

< 1
by Propositions 5.3–5.5. This contradicts the assertion of Corollary 4.3.

Using the reduction of absurdity, we prove part (iv). Thus, we suppose there is a
ground state ‰QFT. Our assumption of (iv) yields (10) immediately. It is clear that
 is in the IR-safe region due to (11) and .1C/=2 D c in the IR-divergent region.
Recall Proposition 5.5 here again. It is easy to check

ˆ

Rd

jkj j j�.k/j2
!.k/1C dk D

ˆ

Rd

jkj j j�.k/j2
!.k/2c

dk �
ˆ

Rd

j�.k/j2
!.k/2.c�1=2/

dk < 1
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since c � 1=2 is in the IR-safe region. We note B0.0/‰QFT D ‰QFT ¤ 0. Ap-
ply Maclaurin’s theorem to f .t/ WD e�itkx (t 2 Œ0; 1�) and insert 1 into t . Then,
we realize that we should de�ne B0.0/ and Bj .k/ in Theorem 4.5 by B0.0/ D
I ˝ I and Bj .k/ D �ixj e�i�kx ˝ I for a � with 0 < � < 1, respectively.
Thus, Propositions 5.3 and 5.4 lead to the conclusion that supk2Rd kBj .k/‰QFTkF �
kjxj‰QFTkF < 1. However, the last two facts contradict the statement of Theo-
rem 4.5.
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The modi�ed unitary Trotter–Kato and Zeno

product formulas revisited

Takashi Ichinose

Dedicated to my friend Pavel Exner on the occasion of his 70th birthday

1 Introduction

The aim of this note is to give some modi�ed versions of the unitary Trotter–Kato
product formula for the form sum C of nonnnegative selfadjoint operators A and B
as well as the Zeno product formula for a nonnnegative selfadjoint operator H in a
Hilbert spaceH. The original problems are the product formulas which have not yet
been established, still remaining as conjectures, but if they hold valid, to be expected
to have the following forms:

s- lim
n!1Œ e

�i.t=n/Ae�i.t=n/B �n D e�itC ; (1)

s- lim
n!1Œ Pe

�i.t=n/HP �n D e�itHP ; (2)

the convergence being uniform on each bounded t -interval in R.
Some additional matters on notations and assumptions follow. First in formula (1),

A and B further are for simplicity assumed such that DŒA1=2� \ DŒB
1=2� is dense,

whereDŒT � stands for the domain of an operator T . Then the form sum

C WD Au B (3)

is de�ned as the nonnegative selfadjoint operator with domainDŒC � associated with
the quadratic form

u 7�! kA1=2uk2 C kB1=2uk2
de�ned on DŒC 1=2� D DŒA

1=2� \DŒB
1=2�. Next in formula (2), P is an orthogonal

projection onto a closed subspace of H, and HP a nonnegative selfadjoint operator
de�ned by

HP WD .H
1=2P /�.H 1=2P /; (4)

which is assumed densely de�ned in H.

Now we are going to state our results on these two formulas.
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Unitary Trotter and Trotter–Kato product formulas

Let us begin with a brief background of the issue. In 1959, Trotter [20] proved among
others, given two selfadjoint operators A andB , which need not be semibounded, the
unitary exponential product formula, when their operator sum AC B is essentially
selfadjoint on the common domainDŒA�\DŒB�with C being the closure ofACB ,
and also the selfadjoint exponential product formula together, as far as both A and
B are bounded from below. In 1978, Kato [13] exploited an ingenious technique to
extend the latter formula to the case for the form sum of two selfadjoint operators
bounded from below.

The problem which we are now interested in is the very case for the unitary ex-
ponential product formula with the form sum, which we should like to call “unitary
Trotter–Kato” product formula but not “unitary Trotter” one, because it concerns the
form sum. The �rst attempt to this problem were a humble work of ours [8] with a
technique of high-spectrum cutoff of both operators A and B , and Lapidus’ ([14],
[15], and [16], cf. [11]) with the short-time unitary groups e�i.t=n/A and e�i.t=n/B
appearing as factors in the product on the left-hand side of (1) replaced by the resol-
vents. A further study with this aspect is pursued in the work [5]. These works will
turn out to have treated “modi�ed” unitary Trotter–Kato product formulas.

However, the genuine original problem is still an open question as mentioned
at the beginning of this section. So we content ourselves to revisiting a modi�ed
version of unitary Trotter–Kato product formula for the form sum C in (3) of A and
B with the short-time unitary groups in the product on the left of (1) replaced by
the resolvents. So the result will not be new. The proof appeals, as is usual, to the
Chernoff theorem ([1] and [2], cf. Supplement XIII.8 in [19]), which in fact entails
showing the approximate generators de�ned through the product of the resolvents of
A and B converge to C in the strong resolvent sense. We show this by solely using a
now well-understood, simple method which was originally elaborated by Kato [13]
to prove his celebrated selfadjoint exponential product formula [13], thus differing
from and somewhat simpler than Lapidus’ and that in [5].

The identity operator onH is denoted by I . The inner product h�; �i of our Hilbert
space H is anti-linear in the �rst argument and linear in the second.

Theorem 1.1. Let A and B be nonnegative selfadjoint operators in H and assume
that DŒA1=2� \DŒB1=2� is dense inH. Then it holds with " D ˙1 that

s- lim
n!1

h�
I C i"

t

n
A
��1�

I C i"
t

n
B
��1in

D e�i"tC ; (5)

uniformly on each bounded t -interval in Œ0;1/ and therefore in R.
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Theorem 1.1 is valid for A;B and C being selfadjoint operators bounded from
below, as well as from above.

By the argument in Chernoff (Section 7, p. 82, in [2]), Theorem 1.1 in particular
implies the following selfadjoint version of it:

Corollary 1.2. Under the same hypothesis as in Theorem 1.1, it holds that

s- lim
n!1

h�
I C t

n
A
��1�

I C t

n
B
��1in

D e�tC ;

uniformly on each bounded t -interval in Œ0;1/.

Some irrelevant but notable two remarks follow: It was Nelson [18] who �rst
mentioned that the unitary Trotter product formula is a good device which can im-
part a meaning to the Feynman path integral [7] which represents the solution of the
Schrödinger equation as a time-sliced approximation. It was shown in [10] (cf. [9])
that there are some nontrivial special cases where even the norm convergence of uni-
tary Trotter product formulas holds.

Zeno product formula

An attractive problem in quantum mechanical measurement is connected with this
formula. However, we will not touch it here but only refer to, e.g., [17] and [6].
Some mathematical treatment has been done, e.g., in [3] and [4].

In this note, we revisit Zeno problem to give a modi�ed version, where for the
nonnegative selfadjoint operatorH , its short-time unitary group e�i.t=n/H on the left
of (2) are replaced by the resolvent .I C i.t=n/H/�1. However, the result is not new
but included in [4] (Theorem 2, p. 70), though ours is treating a slightly more general
case with t -dependent orthogonal projections P.t/. However, the proof in [4] uses
the quadratic form technique, while ours here does again the same simple method as
used in the proof of Theorem 1.1, which is based on Kato’s original idea [13] having
established his selfadjoint exponential product formula for the form sum.

Theorem 1.3. WithH as above, let P.t/ be a strongly continuous function with val-
ues orthogonal projections onH de�ned in some neighborhood of 0 with P.0/DWP .
Then it holds for HP in (4) that

s- lim
n!1

h
P
� t
n

��
I C i

� t
n

�
H
��1

P
� t
n

�in
D e�itHPP; (6)
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uniformly on each bounded t -interval in Œ0;1/, and so in particular, for a t -inde-
pendent projection P ,

s- lim
n!1

h
P
�
I C i

� t
n

�
H
��1

P
in

D e�itHPP;

uniformly on each bounded t -interval in Œ0;1/, and also in R.

From this theorem, it is easy to see that it holds also for the following other prod-
ucts on the left-hand side, namely,

s- lim
n!1

h�
I C i

� t
n

�
H
��1

P
� t
n

�in
D s- lim

n!1

h
P
� t
n

��
I C i

� t
n

�
H
��1in

D e�itHPP:

In Section 2 we prove Theorem 1.1 and Theorem 1.3 in Section 3.

2 Proof of Theorem 1.1

We have only to prove the theorem for " D 1. The case " D �1 is similarly shown.
SinceA andB are nonnegative, there exist spectral measuresEA.d�/ andEB.d�/

on the real line such that A D ´1
0� �EA.d�/ and B D ´1

0� �EB.d�/.
For � > 0, put

F.�/ D .I C i tA/�1.I C i tB/�1;
which is a contraction, and

S.�/ D ��1ŒI � F.�/� D ��1ŒI � .I C i�A/�1.I C i�B/�1�: (7)

Since S.�/ satis�es

Re hf; S.�/f i D ��1Re Œ hf; f i � h.I � i�A/�1f; .I C i�B/�1f i �
� ��1Œ kf k2 � k.I � i�A/�1f k k.I C i�B/�1f k �
D ��1Œ kf k2 � kf k2 �
D 0; f 2 H;

S.�/ is anm-accretive operator (e.g., [12]). Therefore ICS.�/ has a bounded inverse
.I C S.�//�1, which is also a contraction.

In order to show (5), by the Chernoff theorem ([1] and [2], cf. Supplement XIII.8,
p. 386, in [19]), we have only to prove that

.I C S.�//�1
s�! .I C iC /�1; � ! 0C: (8)
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We will employ the method with analogous arguments, but with slightly more
deliberation, used by Kato [13] to prove the selfadjoint exponential product formula
for the form sum of nonnegative selfadjoint operators (cf. [8]).

To rewrite S.�/ in (7), de�ne A.�/ and B.�/ for � > 0 by

iA.�/ WD I � .I C i�A/�1

�
D iA

I C i�A
D �A2

I C �2A2
C i

A

I C �2A2

DW GA.�/C iHA.�/;

iB.�/ WD I � .I C i�B/�1

�
D iB

I C i�B
D �B2

I C �2B2
C i

B

I C �2B2

DW GB.�/C iHB.�/:

Here the four operators GA.�/; GB.�/ andHA.�/; HA.�/ are all bounded nonnega-
tive selfadjoint for � > 0, so that iA.�/ and iB.�/ are m-accretive normal operators.
We have

jA.�/j D .GA.�/
2 CHA.�/

2/
1=2 D A

.I C �2A2/1=2
; (9a)

jB.�/j D .GB.�/
2 CHB.�/

2/
1=2 D B

.I C �2B2/1=2
: (9b)

Noting that

S.�/ D I � .I C i�A/�1

�
C .I C i�A/�1

I � .I C i�B/�1

�

D iA.�/C i.I C i�A/�1B.�/
D .GA.�/C iHA.�//C .GB.�/C iHB.�//C �A.�/B.�/;

(10)

we consider the following modi�cation of S.�/:

yS.�/ D .GA.�/C iHA.�//C .GB.�/C iHB.�//: (11)

We see I C yS.�/ also have bounded inverse with norm not exceeding 1, since
yS.�/ is also m-accretive. Then for the proof of (8), we need to show

.I C yS.�//�1 s�! .I C iC /�1; (12)

.I C S.�//�1 � .I C yS.�//�1 s�! 0: (13)

First we show (12).
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Proof of (12). For f 2 H, put u� D .I C yS.�//�1f , so that

f D .I C yS.�//u�
D u� C .GA.�/CGB.�//u� C i.HA.�/CHB.�//u� :

We have ku�k � kf k since .I C yS.�//�1 is a contraction. Taking the inner product
with u� ,

hu� ; f i D ku�k2 C hu� ; .GA.�/CGB.�//u�i C ihu� ; .HA.�/CHB.�//u�i
D ku�k2 C kG1=2

A .�/u�k2 C kGB.�/1=2u�k2
C i Œ kHA.�/1=2u�k2 C kHB.�/1=2u�k2�:

(14)

Then we see from (14) that the �ve � -families ¹u�º, ¹GA.�/1=2u� º, ¹GB.�/1=2u� º,
¹HA.�/1=2u� º and ¹HB.�/1=2u�º are all uniformly bounded by kf k for � > 0. There-
fore there exists a (sub)sequence ¹� 0º with � 0 ! 0 along which these sequences are
weakly convergent:

u�
w�! u; (15a)

GA.�/
1=2u�

w�! gA; (15b)

GB.�/
1=2u�

w�! gB ; (15c)

HA.�/
1=2u�

w�! hA; (15d)

HB.�/
1=2u�

w�! hB ; (15e)

for some vectors u; gA; gB ; hA; hB inH. We �rst claim that

u 2 DŒC 1=2�; gA D gB D 0; hA D A
1=2u; hB D B

1=2u; (16)

and next

u 2 DŒC �; f D .I C iC /u or u D .I C iC /�1f: (17)

To show (16), note that by the spectral theorem we have for v 2 DŒA1=2�,

GA.�/
1=2v D

ˆ 1

0�

h ��2

1C �2�2

i1=2

E.d�/v
s�! 0;

HA.�/
1=2v D

ˆ 1

0�

h �

1C �2�2

i1=2

E.d�/v
s�! A

1=2v;
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so that

hgA; vi D limhGA.�/1=2u� ; vi D limhu� ; GA.�/1=2vi D hu; 0i D 0;

hhA; vi D limhHA.�/1=2u� ; vi D limhu� ; HA.�/1=2vi D hu; A1=2vi;

the limits taken along � 0 ! 0C. Since DŒA1=2� is dense in H, we have u 2 DŒA1=2�

and gA D 0; hA D A
1=2u. The same is true for B . This yields (16).

To show (17), note that, for all v 2 DŒC 1=2�,

hv; f i D hv; u�i C hGA.�/1=2v; GA.�/
1=2u� i C hGB.�/1=2v; GB.�/

1=2u� i
C i ŒhHA.�/1=2v;HA.�/

1=2u� i C hHB.�/1=2v;HB.�/
1=2u� i�;

the right-hand side of which converges to

hv; ui C i ŒhA1=2v; A
1=2ui C hB1=2v; B

1=2ui� D hv; ui C ihC 1=2v; C
1=2ui;

along � 0 ! 0C. Hence we have

hv; f i D hv; ui C ihC 1=2v; C
1=2ui;

so that C 1=2u 2 DŒC
1=2� and hence u 2 DŒC �, and further f D .I C iC /u. This

yields (17), showing what we claimed in (16)/(17). We have thus seen the weak limits
of (15) do not depend on the (sub)sequence chosen. A standard argument concludes
that (15) with (16) holds as � ! 0C without taking any (sub)sequence.

As the last step to conclude (12), we need to show the strong convergence of the
�ve � -families ¹u�º, ¹GA.�/1=2u� º, ¹GB.�/1=2u�º, ¹HA.�/1=2u�º and ¹HB.�/1=2u� º.
To do so, it suf�ces to show the norms of these vectors converge. To this end, observe
the real and imaginary parts of (14):

Re hu� ; f i D ku�k2 C kGA.�/1=2u�k2 C kGB.�/1=2u�k2;

Im hu� ; f i D kHA.�/1=2u�k2 C kHB.�/1=2u�k2:

Then by the fact of weak convergence of ¹u�º and (17), as the left-hand sides
converge if � ! 0C, i.e.,

Re hu� ; f i �! Re hu; f i D kuk2;

Im hu� ; f i �! hu; Cui D kC 1=2uk2 D kA1=2uk2 C kB1=2uk2;
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so do the right-hand sides. Therefore we have for the real part

kuk2 D lim Œ ku�k2 C kGA.�/1=2u�k2 C kGB.�/1=2u�k2 �
D lim inf Œ ku�k2 C kGA.�/1=2u�k2 C kGB.�/1=2u�k2 �
� kuk2 C k0k2 C k0k2

D kuk2;

and for the imaginary part

kC 1=2uk2 D lim Œ kHA.�/1=2u�k2 C kHB.�/1=2u�k2 �
D lim inf Œ kHA.�/1=2u�k2 C kHB.�/1=2u�k2 �
� kA1=2uk2 C kB1=2uk2

D kC 1=2uk2:

Here in the above argument we have used the fact that weak convergence of ¹w�º to
w implies lim inf kw�k � kwk. This shows the convergence of the norms of these
�ve families and consequently their strong convergence.

Proof of (13). We need to estimate the left-hand side of (13). Rewrite it with (10)
and (11) as

.I C S.�//�1 � .I C yS.�//�1 D �.I C S.�//�1Œ�A.�/B.�/�.I C yS.�//�1: (18)

Four lemmas are provided. However, the one which we in fact need for the proof
of (13) is only Lemma 2.4. The others, though giving some supplementary inequali-
ties among the operators concerned, may be skipped.

Lemma 2.1. (i) Both .� jA.�/j/1=2 and .� jB.�/j/1=2 are contractions, and converge
strongly to 0 as � ! 0C.

(ii) For v 2 H,

jhv; �A.�/B.�/vij
� hjA.�/j1=2v; � jA.�/j jA.�/j1=2vi1=2hjB.�/j1=2v; � jB.�/j jB.�/j1=2vi1=2

� 1

2
hv; .jA.�/j C jB.�/j/vi:

(19)
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Proof. (i) It is clear from (9) that .� jA.�/j/1=2 is a contraction which converges
strongly to 0 as � ! 0C. The same is also valid for B.�/.

(ii) First note that the normal operators A.�/ and B.�/ have the polar decompo-
sitions (see, e.g. [12]):

A.�/ D U.�/jA.�/j D jA.�/jU.�/; B.�/ D V.�/jB.�/j D jB.�/jV.�/;

where U.�/ and V.�/ are partial isometries onH. So we have

�A.�/B.�/ D .� jA.�/j/1=2jA.�/j1=2.U.�/V .�//.� jB.�/j/1=2jB.�/j1=2:

Since U.�/ and V.�/ are contractions, it follows that for v 2 H,

jhv; �A.�/B.�/vij
� hjA.�/j1=2v; � jA.�/j jA.�/j1=2vi1=2hjB.�/j1=2v; � jB.�/j jB.�/j1=2vi1=2

� 1

2
hv; .jA.�/j C jB.�/j/vi:

This shows the lemma.

Lemma 2.2. We have

kŒICGA.�/CGB.�/C.HA.�/CHB.�//��1=2ŒICjA.�/jCjB.�/j�1=2k � 1; (20)

and

kŒI CGA.�/C GB.�/C i.HA.�/CHB.�//�
�1=2

ŒI CGA.�/CGB.�/C .HA.�/CHB.�//�
1=2k

D kŒI CGA.�/CGB.�/C .HA.�/CHB.�//�
1=2

ŒI CGA.�/CGB.�/C i.HA.�/CHB.�//�
�1=2k

�
p
2:

Proof. The �rst inequality (20) is equivalent to the inequality

jA.�/j C jB.�/j � GA.�/CGB.�/C .HA.�/CHB.�//;

which holds because jA.�/j � GA.�/CHA.�/ by the expression (9) of jA.�/j and
the same for jB.�/j.

The second inequality is a consequence of the following lemma.
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Lemma 2.3. LetA andB be nonnegative bounded selfadjoint operators onH. Then
for v 2 H

jhv; .I CB C iA/vij � 1p
2

hv; .I CB CA/vi D 1p
2

k.I CB CA/
1=2vk2; (21)

so that

k.I C B C A/
1=2.I C B C iA/�1.I C B C A/

1=2k �
p
2; (22)

in particular,

k.ICBCA/1=2.I CBC iA/�1k D k.ICBC iA/�1.ICBCA/1=2k �
p
2: (23)

Proof. Taking the absolute value and using .a2 C b2/
1=2 � 1=

p
2 .a C b/, we have

jhv; .I C B C iA/vij D Œhv; .I C B/vi2 C hv; Avi2�1=2

� 1p
2
Œhv; .I C B/vi C hv; Avi�

D 1p
2

hv; .I C B C A/vi:

This shows (21). The other assertions (22) and (23) are easy to see.

Lemma 2.4. For all v 2 H,

jhv; .I C S.�//vij �
p
2� 1
2

hv; .I C jA.�/j C jB.�/j/vi;

so that

k.I CK.�//
1=2.I C S.�//�1.I CK.�//

1=2k � 2p
2 � 1; (24)

where

K.�/ WD jA.�/j C jB.�/j:
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Proof. Noting the expression (10) of S.�/ and the fact thatGA.�/CHA.�/ � jA.�/j
and the same for HB.�/, we have

j.v; .I C S.�//v/j
� j.v; ŒI C .GA.�/CGB.�//C i.HA.�/CHB.�//�v/j � j.v; �A.�/B.�/v/j

� 1p
2
.v; ŒI C .GA.�/CGB.�//C .HA.�/CHB.�//�v/� j.v; �A.�/B.�/v/j

� 1p
2
Œ kvk2 C .v; .jA.�/j C jB.�/j/v/�� 1

2
.v; .jA.�/j C jB.�/j//v/

D 1p
2

h
kvk2 C

�
1� 1p

2

�
.v; .jA.�/j C jB.�/j/v/

i

� 1p
2

�
1� 1p

2

�
Œ kvk2 C .v; .jA.�/j C jB.�/j/v/�

D
p
2 � 1
2

.v; .I CK.�//v/:

The transition among the above inequalities will be easy to follow; if not, with a slight
help of the previous three lemmas, the second inequality by Lemma 2.2 or 2.3 and
the third by Lemma 2.1 (ii). This shows Lemma 2.4.

Now we are going to �nalize the proof of (13). By (19) we have

.I C S.�//�1 � .I C yS.�//�1

D �Œ .I C S.�//�1.I CK.�//
1=2� Œ .I CK.�//�1=2jA.�/j1=2 �

Œ .� jA.�/j/1=2U.�/V .�/.� jB.�/j/1=2 �

Œ jB.�/j1=2.I CK.�//�1=2� Œ .I CK.�//
1=2.I C yS.�//�1 �:

Here the �ve factor in the product on the right-hand side are all bounded operators uni-
formly for � > 0, which are strongly continuous in � . Indeed, by (24) in Lemma 2.4
the �rst and the last factor are bounded by 2=.

p
2�1/, and further the second and the

last second by 1. The crucial is that the third factor in the middle

Œ .� jA.�/j/1=2U.�/V .�/.� jB.�/j/1=2 �

converges strongly to 0 as � ! 0C. Thus we see (18) converge strongly to 0, show-
ing (13), and completing the proof of Theorem 1.1.
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3 Proof of Theorem 1.3

The proof will proceed similarly as in Section 2. For � > 0, put

F.�/ D P.�/.I C i�H/�1P.�/;

which is a contraction, and

S.�/ D ��1ŒI � F.�/� D ��1ŒI � P.�/.I C i�H/�1P.�/�:

Since S.�/ satis�es

Re.f; S.�/f / D ��1ReŒ.f; f / � .P.�/f; .I C i�H/�1P.�/f /�

� ��1Œ kf k2 � kP.�/f k k.I C i�H/�1P.�/f k �
D ��1Œ kf k2 � kf k2�
D 0;

for all f 2 H, S.�/ is an m-accretive operator again. Therefore I C S.�/ has a
bounded inverse .I C S.�//�1, which is also a contraction.

In order to show (6), by the Chernoff theorem we have only to show that

.I C S.�//�1
s�! .I C iHP /

�1P; � ! 0C: (25)

Since

1

�
ŒI � .I C i�H/�1� D iH

I C �H

D �2H

I C �H 2
C i

iH

I C �H 2

DW G.�/C iH.�/;

where both G.�/ andH.�/ are nonnegative selfadjoint operators, we have

S.�/ D ��1ŒI � P.�/.I C i�H/�1P.�/�

D ��1.I � P.�//C P.�/G.�/P.�/C i P.�/H.�/P.�/;

so that

I C S.�/ D I C ��1.I � P.�//C P.�/G.�/P.�/C iP.�/H.�/P.�/

D .1C ��1/.I � P.�//C P.�/.I CG.�/C iH.�//P.�/:
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Now we going to show assertion (25). For f 2 H put u� D .I C S.�//�1f ,
so that

f D .I C S.�//u�

D u� C ��1.I � P.�//u� C P.�/G.�/P.�/u� C iP.�/H.�/P.�/u� :
(26)

Then taking the inner product with u� , we have

hu� ; f i D hu� ; u�i C ��1hu� ; .I � P.�//u�i C hG.�/1=2P.�/u� ; G.�/
1=2P.�/u�i

C ihH.�/1=2P.�/u� ; H.�/
1=2P.�/u�i

D ku�k2 C ��1k.I � P.�//u�k2 C kG.�/1=2P.�/u�k2
C ikH.�/1=2P.�/u�k2:

(27)

From equation (27), we see that for � > 0, the four families

¹u� º; ¹��1=2.I � P.�//u�º; ¹G.�/1=2P.�/u�º; ¹H.�/1=2P.�/u�º

are bounded by kf k, so that there exist a (sub)sequence ¹� 0º, � 0 ! 0C, along which

u�
w�! u; (28a)

��1=2.I � P.�//u�
w�! u0; (28b)

G.�/
1=2P.�/u�

w�! g; (28c)

H.�/
1=2P.�/u�

w�! h; (28d)

for some u; u0; g; h 2 H. We claim �rst that

u D Pu 2 DŒH 1=2�; u0 D g D 0; h D H
1=2Pu; Pf D P.I C iHP /u;

(29)
and second

u D Pu 2 DŒHP �; Pf D P.I C iHP /u (30a)

or

u D Pu D .I C iHP /
�1Pf: (30b)
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In fact, �rst from the second constituent of (28), we see that

.I � P.�//u� s�! 0;

so that we have .I � P /u D 0 or u D Pu. Applying .I � P.�// to (26), we have

.I � P.�//f D .1C ��1/.I � P.�//u� :

and taking the inner product with u� ,

hu� ; .I � P.�//f i D h.I � P.�//u� ; f i
D k.I � P.�//u�k2 C k��1=2.I � P.�//u�k2:

By letting � 0 ! 0C, we have

.u; .I � P /f / D .0; f / D 0C lim inf ku0k2 � ku0k2;

whence u0 D 0.
Next, for every w 2 DŒH 1=2�, we have, with the limit taken along � 0 ! 0C,

hw; gi D limhw;G.�/1=2P.�/u�i D limhG.�/1=2w;P.�/u�i D h0; Pui;

hw; hi D limhw;H.�/1=2P.�/u�i D limhH.�/1=2w;P.�/u�i D hH 1=2w;Pui;

because G.�/1=2w
s! 0 and H.�/1=2w

s! H
1=2w as � ! 0C. Hence g D 0,

and u D Pu belongs to DŒH 1=2� and h D H
1=2Pu because DŒH 1=2� is dense by

assumption. Applying the projection P.�/ to (26) and taking the inner product with
w 2 DŒH 1=2�,

hw;P.�/f i D hw;P.�/u�i C hG.�/1=2P.�/w;G.�/
1=2P.�/u�i

C ihH.�/1=2P.�/w;H.�/
1=2P.�/u�i:

Taking the limit along � 0 ! 0C, we get

hw;Pf i D hw;Pui C h0; 0i C ihH 1=2Pw; hi:

By density of DŒH 1=2� again, we see h 2 DŒ.H 1=2P /�� and

Pf D PuC i.H
1=2P /�h D PuC i.H

1=2P /�.H 1=2P /u D PuC iHPu:

This shows our claim (29)/(30). Thus we have seen the weak limits of (28) do not de-
pend on the (sub)sequence chosen. A standard argument concludes that (28)with (30)
holds as � ! 0C without taking any (sub)sequence.
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Finally, as the last step to conclude (25), we need to show the strong conver-
gence of the three families ¹u� º, ¹G.�/1=2P.�/u�º and ¹H.�/1=2P.�/u�º. To do so,
it suf�ces to show the norms of these vectors converge. To this end, as in Section 2,
observe the real and imaginary parts of (27), however, with P.�/f in place of f :

Re hu� ; P.�/f i D kP.�/u�k2 C kG.�/1=2P.�/u�k2;

Im hu� ; P.�/f i D kH.�/1=2P.�/u�k2:
By the fact of weak convergence of ¹u�º for � ! 0C, as the left-hand sides converge,
i.e.,

Re hu� ; P.�/f i �! hu; Pui D kPuk2;

Im hu� ; P.�/f i �! hu;HPui D kH 1=2Puk2;
so do the right-hand sides. Therefore we have for the real part

kPuk2 D lim ŒkP.�/u�k2 C kG.�/1=2P.�/u�k2�
D lim inf Œku�k2 C kG.�/1=2P.�/u�k2�
� kPuk2 C k0k2

D kPuk2;
and for the imaginary part

kH 1=2Puk2 D lim kH.�/1=2P.�/u�k2

D lim inf kH.�/1=2P.�/u�k2

� kH 1=2Puk2:
This shows the convergence of the norm of these three vectors and as a result their
strong convergence. Thus we have shown (25), completing the proof of Theorem 1.3.

Acknowledgement. Thanks are due to the referee for valuable comments.
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Spectral asymptotics induced by approaching

and diverging planar circles

Sylwia Kondej

Dedicated to Pavel Exner on the occasion of his 70th birthday

1 Introduction

This paper discusses research into the so-called Schrödinger operators with delta po-
tentials. We study a special model: a two-dimensional quantum system with delta
potential supported by two concentric circles: CR and CRd

, where CR WD ¹.x; y/ 2
R2W .x2 C y2/

1=2 D Rº and CRd
is de�ned analogously for Rd WD R C d , d > 0.

The Hamiltonian of such a system can be symbolically written as

�� � ˇıCR
� ˛ıCRd

; where ˛; ˇ 2 R; (1)

where ıCr stands for the Dirac delta supported onCr . To de�ne a self-adjoint operator
H˛;ˇ;d coresponding formally to (1) we employ the form sum method.

The main results. We investigate the behaviour of the discrete eigenvalues for
d ! 0 and d ! 1. In fact, in both asymptotics one can observe certain “spec-
tral memory” on a single circle system. Therefore, it is convenient to introduce a
special notation H;R for the Hamiltonian corresponding to the formal expression

�� � ıCR
;  2 R:

In the following  will be expressed by means of the coupling constants ˛ and ˇ,
however, this dependence will be different in two considered cases. If  > 0 then
operator H;R has 2M;R C 1 eigenvalues (counting multiplicity), where M;R WD
max¹m 2 ZW 2jmj < Rº.

The �rst result concerns the eigenvalue asymptotics in the approaching circles
system and the statement can be formulated as follows.
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� LetEm denote an eigenvalue ofH˛Cˇ;R. Then the eigenvalues ofH˛;ˇ;d admit
the following asymptotics

Em C tmd C o.d/;

for d ! 0. The explicit form for the �rst correction term tm is derived in The-
orem 3.1. The analysed system enables separation of variables and, consequently,
relying on the implicit function theorem we can reproduce tm in the terms of the
Bessel functions and their derivatives. In Section 3.1 we also study certain properties
of tm; for example, we show that the sign of tm is not de�ned generally.

The second result is addressed to the system with circles separated by a large
distance.

� Assume that d ! 1. Then the system has a “tendency for the decoupling.”
This is manifested as the localization of eigenvalues of H˛;ˇ;d near the eigenvalues
of Hˇ;R as well asH˛;Rd

. Precisely, the eigenvalues ofH˛;ˇ;d behave as

8
<̂

:̂
�˛

2

4
C m2 � 1=4

d2
C o.d�2/; jmj � M˛;Rd

;

Em;ˇ C wm "C o."/; jmj � Mˇ;R;

(2)

where " WD exp.�2d�m;ˇ / and Em;ˇ stand for the eigenvalues of Hˇ;R. Note that
the expression in the �rst line of (2) re�ects the asymptotics of eigenvalues ofH˛;Rd

.
The models of delta interactions supported by circles or spheres has been already

studied in the various contexts and dimensions, see for example [3], [4], [6], [7], [8],
[9], [12], and [17].

2 Preliminaries and the main result

Single ring: spectral properties of the system. Spectral properties of the single
circle Hamiltonian will be essential for both asymptotics considered in this paper.
Therefore, we start our analysis by recalling some useful known facts, cf. [9]. Con-
sider the Hamiltonian H;R associated to the sesquilinear form

h;R.f; g/ D .rf;rg/L2.R2/ � 

ˆ

CR

Nfg ds; f; g 2 W 1;2.R2/;  2 R;

where the functions in the second component are understood in the sense of the
trace embedding W 1;2.R2/ ,! L2.CR/ and the arc length parameter s ranges s 2
Œ0; 2�R/. In fact, L2.CR/ can be identi�ed with L2..0; 2�R//. We de�ne H�;R as
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the operator associated to h;R via the �rst representation theorem, cf. [11]. Applying
the results of [5] we conclude that H;R is self-adjoint and it gives a mathematical
meaning to the formal expression (1).

To be speci�c we introduce the polar system of coordinates .r; �/ where1 r > 0,
� 2 Œ0; 2�/. The delta potential support CR decomposes R2 onto two disjoint open
sets �i, �e; denote by x�i, x�e their closures and C1R WD C 1.x�i/ [ C 1.x�e/. Assume
that f 2 C1R satis�es

lim
r!RC

f .r; �/ D lim
r!R�

f .r; �/ DW fR.�/; (3a)

lim
r!RC

@rf .r; �/ � lim
r!R� @rf .r; �/ D � fR.�/: (3b)

Then the operator which acts as

{H;Rf D ��f a.e. in R
2;

on the domain

D. {H;R/ D ¹f 2 C1R \W 2;2.R2 n CR/W f satis�es (3)º
is essentially self-adjoint and its closure coincides with H;R, cf. [5].

Since the delta potential is compactly supported the essential spectrum of H;R
is stable under such “perturbant,” i.e.,

�ess.H;R/ D Œ0;1/;

cf. [5].
Henceforth we will consider negative eigenvalues. In view of the rotational sym-

metry we postulate that the eigenfunctions ofH;R take the form .1=
p
2�/%m.r/eim� ,

where m 2 Z. Let � > 0. The behaviour of eigenfunctions at the in�nity and origin
imposes

%m.r/ D c1Km.�r/; for r > R; (4a)

%m.r/ D c2Im.�r/; for r < R; (4b)

where Km.�/ and Im.�/ denote the modi�ed Bessel functions, cf. [1]. Using the
boundary conditions (3) we get the spectral condition

Km.�R/Im.�R/ D 1

R
; m 2 Z; (5)

cf. [9].

1 In view of the above trace embedding operator it seems natural to consider s parameter instead
of �; however, since we going to implement the second circle it is more convenient to stay with standard
polar coordinates.
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It follows from (4) that � determines the spectral parameter and the solutions
of (5) reproduce negative eigenvalues E ofH;R by means of the relation E D ��2.

Remarks 2.1. A. Relying on asymptotics formulae (25)–(28) and using the fact that
.KmIm/.�/ is monotonously decreasing we state that the equation (5) has exactly one
solution for � > 0 provided 2jmj < R or equivalently jmj � M;R and no solution
otherwise; recall that the notationM;R was introduced in introduction.

B. It is also useful to recall that for R large the solution of (5) behaves as

��2m D �
2

4
C m2 � 1=4

R2
CO.�2R�4/:

Hamiltonian with the delta potential supported by two concentric rings. Let
s 2 Œ0; 2�R/ and sd 2 Œ0; 2�Rd / stand for the arc length parameters associated to
CR and CRd

respectively. For ˛; ˇ 2 R let us de�ne the sesquilinear form

h˛;ˇ;d .f; g/ D .rf;rg/L2.R2/�ˇ
ˆ

CR

Nfg ds�˛
ˆ

CRd

Nfgddsd ; f; g 2 W 1;2.R2/;

where we employ the trace embedding of W 1;2.R2/ to L2.Cr/ ' L2..0; 2�r//,
r D R;Rd . Similarly as for the single circle case we de�ne the operator H˛;ˇ;d
associated to h˛;ˇ;d via the �rst representation theorem.

Analogously for the single circle we can characterizeH˛;ˇ;d by means of bound-
ary conditions. Note that circles CR and CRd

decompose R2 onto three open sets
�i
1, �

i
2 and �

e. Denote C1R;Rd
WD C 1.x�i

1/ [ C 1.x�i
2/ [ C 1.x�e/ and assume that

f 2 C1R;Rd
satis�es

lim
r!RC

f .r; �/ D lim
r!R� f .r; �/ DW fR.�/; (6a)

lim
r!RC

@rf .r; �/ � lim
r!R�

@rf .r; �/ D � f̌R.�/; (6b)

lim
r!R

C
d

f .r; �/ D lim
r!R�

d

f .r; �/ DW fRd
.�/; (6c)

lim
r!R

C
d

@rf .r; �/ � lim
r!R�

d

@rf .r; �/ D �˛ fRd
.�/: (6d)

In fact, H˛;ˇ;d stands for the closure

{H˛;ˇ;df D ��f a.e. in R
2;

D. {H˛;ˇ;d/ D ¹f 2 C1R;Rd
\W 2;2.R2 n .CR [ CRd

//W f satis�es (6)º:
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2.1 Spectral equation for the double ring system

To derive the spectral equation for the double ring system we proceed analogously
as in the previous case. The system again admits separation variables. Consequently,
the eigenfunctions of H˛;ˇ;d can be written as 1=

p
2� �m.r/eim� , where m 2 Z and

�m.r/ D C1Km.�r/; for r > Rd ;

�m.r/ D C2Km.�r/C C3Im.�r/; for R < r < Rd ;

and
�m.r/ D C4Im.�r/; for r < R:

Inserting the above formulae to (6) we obtain four equations:

C1Km.�Rd / � C2Km.�Rd / � C3Im.�Rd / D 0;

C1.�K
0
m.�Rd /C ˛Km.�Rd // � C2�K

0
m.�Rd / � C3�I 0

m.�Rd / D 0;

C2Km.�R/C C3Im.�R/ � C4Im.�R/ D 0;

C2�K
0
m.�R/C C3�I

0
m.�R/C C2.ˇIm.�R/ � �I 0

m.�R// D 0:

Spectral equation. The above system of equations admits a solution if and only if
the determinant of the corresponding matrix vanishes. This condition can be written
by means of the equation

�m.�; d/ D 0; m 2 Z; � > 0; d � 0; (7)

where

�m.�; d/ D �m.�; d/ � �m;˛.�/�m;ˇ .�/; (8)

with

�m;˛.�/ � �m;˛;d .�/ WD ˛Rd .KmIm/.�Rd / � 1; (9a)

�m;ˇ .�/ WD ˇR.KmIm/.�R/ � 1; (9b)

and
�m.�; d/ WD ˛ˇRdRK

2
m.�Rd /I

2
m.�R/: (10)

Formulae (7) constitute the spectral equations for H˛;ˇ;d .

Remark 2.2. Note that the functions �m;� , where � D ˛; ˇ are related to the single
circle systems. More precisely, the relations

�m;� .�/ D 0;

determine spectral equations of H˛;Rd
andHˇ;R.



424 S. Kondej

3 Approaching rings

In this section we consider the eigenvalue asymptotics for d ! 0 and ˛ C ˇ > 0.
Note that for d D 0 equation (7) reads

Km.�R/Im.�R/ D 1

.˛ C ˇ/R
I (11)

the latter corresponds to the single ring HamiltonianH;R with coupling constant  D
˛Cˇ, cf. (5). As follows from the previous discussion, see Remark 2.1, equation (11)
has exactly one solution �m provided jmj � M˛Cˇ;R.

The following theorem provides the spectral asymptotics for approaching rings.

Theorem 3.1. Assume  D ˛ C ˇ > 0. Let Em, where jmj � M;R, stand for an
eigenvalue ofH;R. Then the eigenvalues ofH˛;ˇ;d admit the following asymptotics
for d ! 0:

Em.d/ D Em C tm d C o.d/;

where tm is given by

tm WD 2�mImKm .�˛ˇRImKm C ˛�mR.ImKm/
0 C ˛ImKm/

R.ImKm/0
I (12)

moreover, functions Km.�/ and Im.�/ as well as their derivatives contributing to (12)
are de�ned for the value R�m.

Proof. Suppose jmj � M;R. Eigenvalues ofH˛;ˇ;d are determined by the solutions
of (7). Note that

�m.�m; 0/ D 0:

Using the regularity ofKm and Im we state for d 2 R and � > 0 the functions @�m=@�

and @�m=@d are C1. Furthermore, using (11) we get

@�m

@�
D .˛ C ˇ/R2.ImKm/

0 D R
.ImKm/

0

.ImKm/
;

where the derivative at the left-hand side is de�ned at .�m; 0/. Moreover, Zm D
Zm.R�m/, Zm D Km; Im and the analogous notation is applied for the deriva-
tives contributing to the right-hand side of the above expression. Since the func-
tion .ImKm/.�/ is monotonously decreasing we have @�m=@� < 0. Consequently,
we can employ the implicit function theorem which states that there exists a neigh-
bourhood U 2 R of 0 and the unique function U 3 d 7! �m.d/ 2 R such that
�m.�m.d/; d/ D 0 and

�m.d/ D �m �
�@�m
@d

��@�m
@�

��1
d C o.d/; (13)

where all derivatives in the second component are determined for d D 0, � D �m.
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Using (8) and the Wroskian equation

.I 0
mKm/.z/ � .K 0

mIm/.z/ D 1

z
(14)

we get by a straightforward calculation

@�m

@d
D �˛ˇR.KmIm/C ˛�mR.ImKm/

0 C ˛.ImKm/:

Combining the above derivatives together with (13) we arrive at

Em.d/ D ��m.d/2

D ��2m C 2�m
@�m

@d

�@�m
@�

��1
d C o.d/

D Em C tmd C o.d/;

with tm given by (12).

3.1 Discussion on the �rst order correction

In this section we discuss some properties of the �rst order correction for converging
rings.

The �rst order correction in the terms of unperturbed eigenfunctions. The fol-
lowing analysis will be conducted for m D 0. Let f0 stand for the ground state of
H˛Cˇ;R. Using (3) and (4) we conclude that c1 D .I0=K0/c2; recallK0 D K0.R�0/,
I0 D I0.R�0/ and the analogous notation is employed for derivatives. Applying the
relation

ˆ

xZ20.x/dx D x2

2
.Z20.x/ � .Z0

0.x//
2; Z0 D I0; K0;

one can show that the norm of eigenfunction f0 is given by

kf0k2L2.R2/
D jc2j2 R

2

2K2
0

..IK 0/2 � .KI 0/2/:

Using again the Wronskian equation (14) one gets

kf0k2L2.R2/
D �jc2j2 R

2�0K
2
0

.I0K0/
0:
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Applying the above formula together with boundary conditions (3) and comparing
this with (12) we obtain

t0 D
�˛
�
ˆ

CR

@C
r jf0j2ds C ˛

ˆ

CR

jf0j2ds
�

� ˛

R

ˆ

CR

jf0j2ds

kf0k2L2.R2/

; (15)

where we abbreviate @C
r f .r; �/ D limr!RC @rf .r; �/; recall that the equation s D

R� states the relation between � 2 Œ0; 2�/ and s 2 Œ0; 2�R/.
Let us mention that the above formula describes a very particular case of the class

considered in the forthcoming paper [13]. In this paper the spectral asymptotics for
approaching hypersurfaces in Rd is analyzed. The method developed in [13] allows
to reconstruct asymptotics of eigenvalues by means of the “unperturbed” eigenfunc-
tions. The technics enables generalization for complex coupling constants.

The last component of (15) re�ects contribution of the curvature to the �rst cor-
rection term. More general situation shows a presence of the �rst mean curvature
in eigenvalue asymptotics, cf. [13]. Furthermore, let us note that a contribution of
the �rst mean curvature in spectral asymptotics has been recently shown in related
problems, see [14], [15], and [16].

The second component of (15) is a consequence of singular character of delta
potential. Suppose f0 and fd denote the normalized ground states of H˛Cˇ;R and
H˛;ˇ;d , respectively. The second component of (15) comes directly from the fact that
@r .f0 � fd /.r; �/ do not tend to 0 if d ! 0 and r 2 .R;Rd /.

The sign of tm. For the one-dimensional system with two converging points of
interaction the �rst order correction is always positive, cf. [2]. This means that the
splitting of the singular potential from one point to two points leads to pushing up
the eigenvalue. The situation is slightly different in the case of converging circles.
As formula (12) shows the sign of t0 depends on

& WD ˛.1 � ˇR/I0K0 C ˛�0R.I0K0/
0;

i.e., sign & D �sign t0.
� First, let us consider the situation when R ! 0; then �0 ! 0 as well, cf. [9].

Employing asymptotics formulae for Z0, where Z0 D I0; K0, see (27) and (28)
together with (29)-(31) one gets

& � �˛.1� ˇR/ ln.�0R/;

which implies & > 0 for R small enough and, consequently, leads to t0 < 0.
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� Now we assume that R ! 1. Then �0 � =̨2 and using again formulae (27)
and (28) we obtain

& D �˛ˇR
� 1

2�0R
CO..�0R/

�3/
�
:

This shows that for R large enough we have & < 0 and t0 > 0.
The above discussion establishes that the sign of the �rst order correction term is

generally unde�ned.

4 Diverging rings

In this section we consider the asymptotics for circles separated by a large distance,
i.e., for d ! 1.

Following the convention introduced in the previous discussion we denote by
H˛;Rd

andHˇ;R the corresponding single circle Hamiltonians. OperatorH˛;Rd
has

2M˛;Rd
C 1 (counting multiplicities) eigenvalues ¹Em;˛ºjmj�M˛;Rd

and Hˇ;R has
2Mˇ;R C 1 eigenvalues ¹Em;ˇ ºjmj�Mˇ;R

. Suppose � D ˛; ˇ. In fact, Em;� can be
recovered from the spectral equations, i.e., Em;� D ��2m;� where �m;� stand for the
solutions of

�m;� .�/ D 0; for � > 0:

Recall that �m;� are de�ned by (9). Moreover, using the statement of Remark 2.1 we
conclude that

Em;˛ D �˛
2

4
C m2 � 1=4

R2
d

CO.d�4/: (16)

Theorem 4.1. Assume that ˛ and ˇ are positive and Em;ˇ ¤ �˛2=4 for all jmj �
Mˇ;R. Then the eigenvalues ofH˛;ˇ;d admit the following asymptotics for d ! 1:

�d D

8
<̂

:̂
�˛

2

4
C m2 � 1=4

d2
C o.d�2/; jmj � M˛;Rd

;

Em;ˇ C wm "C o."/; jmj � Mˇ;R;

(17)

where

" WD exp.�2d�m;ˇ /; wm WD �˛ˇRe�2�m;ˇRIm.R�m;ˇ /
2

�
1� ˛

2�m;ˇ

�
� 0
m;ˇ

.�m;ˇ /
: (18)
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Remark 4.2. In fact, �d re�ects the asymptotics of 2.M˛ CMˇ /C 2 eigenvalues of
Hd . However, since �d converge to Em;˛ and Em;ˇ we leave the labelling inherited
from the discrete eigenvalues of the single circle Hamiltonians.

Proof. The analysis is based on investigating spectral equation (7) which reads

�m.�; d/ D �m.�; d/ � �m.�; d/ D 0; (19)

where
�m.�; d/ WD �m;˛;d .�/�m;ˇ .�/:

First, assume that jmj � Mˇ;R. Then for d large enough we have jmj � M˛;Rd
.

Combining equations (9) and (10) with the formulae (25) and (26) we get the follow-
ing asymptotics for � ! 1 and any m 2 Z:

8
ˆ̂<
ˆ̂:

�m.�; d/ D 1� ˛ C ˇ

2�
CO.��2/;

�m.�; d/ D ˛ˇ

4�2
e�2d�.1C o�.1//I

(20)

the error terms in the above expressions are uniform with respect to d > C where
C is a positive number 2. The symbol o�.1/ donotes that the asymptotics understood
with respect to �. On the other hand, for � ! 0 we have

�m.�; d/ D

8
<̂

:̂

�˛Rd
2m

� 1
��ˇR
2m

� 1
�
.1C o�.1//; m ¤ 0;

˛ˇ log.�R/ log.�Rd /RRd .1C o�.1//; m D 0;

(21)

and

�m.�; d/ D

8
<̂

:̂

˛

4m2
R2mC1

R2mC1
d

.1C o�.1//; m ¤ 0;

˛ˇ log2.�Rd /RRd .1C o�.1//; m D 0;

(22)

where all error terms are uniform with respect to d > C . We have �m.�; d/ > 0.
Moreover, �m.�; d/ ! 0 as d ! 1 and the limit is uniform with respect to
� > C . It follows from (21) and (22) that if m ¤ 0 then �m.0; d/ > �m.0; d/ for d
large enough. If m D 0 then the corresponding limits for � ! 0 do not exist, how-
ever, �m.�; d/ > �m.�; d/ holds for � from a neighbourhood of 0 and d large enough.
The function �m.�; d/ has two roots: �m;˛ and �m;ˇ . Moreover �m.�; d/ ! 1 for
� ! 1 and the limit is uniform with respect to d > C . It follows from the discussed

2Note that in this proof C denotes a positive constant which can change from line to line
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properties of �m and �m and their continuity that equation (19) has at least two solu-
tions. Furthermore, for d ! 1 we have �m.�; d/ D . =̨.2�/ � 1 C od .1//�m;˛.�/

and the error is uniform with respect to � > C . This implies that (19) has exactly two
solutions for � > C which we denote as �m;˛.d/ and �m;ˇ .d/ and they approach to
�m;˛ and �m;ˇ as d ! 1. Note that, since C can be chosen arbitrary small we can
conclude, in view of the behaviour of �m and �m in a neighbourhood of 0, that (19)
has exactly two solutions for � 2 .0;1/. Let us consider �m;ˇ .d/. We have

�m;ˇ .d/ D �m;ˇ C ım;ˇ .d/;

where ım;ˇ .d/ converges to 0 as d ! 1. Inserting �m;ˇ .d/ to �.�; d/ one gets

�.�m;ˇ .d/; d/ D �m.�m;ˇ .d/; d/� �m;˛.�m;ˇ /�
0
m;ˇ .�m;ˇ /ım;ˇ C o.ım;ˇ /: (23)

The equation
�.�m;ˇ .d/; d/ D 0 (24)

and the behaviour of �m.�m;ˇ .d/; d/ imposes dım;ˇ .d/ ! 0 as d ! 1. Therefore,
we get

�m.�m;ˇ .d/; d/ D �˛ˇR

2�m;ˇ
e�2�m;ˇRIm.R�m;ˇ /

2"C o."/:

Implementing the above expression and (23) to (24) and comparing appropriated
terms leads to (18). To derive the second eigenvalue we employ (16) together with
the asymptotics of �m;˛ which depends on d as well. The analogous analysis as
above establishes the asympotics of eigenvalues localized near �˛2=4, see the �rst
line of (17).

If jmj > Mˇ;R and jmj � M˛;Rd
then �m.�; d/ D 0 has only one solution �m;˛ .

Then repeating the above steps one shows the existence of one solution of the spectral
equation; this solution admits the asymptotics speci�ed in the �rst line of (17).

The result of the above theorem corresponds to the phenomena known for regular
potentials. It was shown in [10] that the introducing a second well to the single well
system leads to the splitting of original eigenvalues and the corresponding spectral
gaps can be expressed by the current. Consequently, the asymptotics of the gaps, if
the wells are separated by a large distance, is determined by the exponential decay
of eigenvectors. Theorem 4.1 shows that the introducing interaction supported by
circle CRd

to the system governed byHˇ;R leads to the shifting of original energies
Em;ˇ and this spectral shifting is determined by exponential decay of corresponding
eigenfunctions.

One the other hand, the system governed by H˛;Rd
admits eigenvalues Em;˛

which depend on d , see (16). Formula (17) shows that the leading terms of this eigen-
values asymptotics are preserved if we introduce also interaction supported by CR.
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5 Appendix

We complete here the asymptotics of functions contributing to the spectral equations,
see [1]. Namely, for z ! 1 and m 2 Z we have

Im.z/ D ezp
2�

�
1 � 4m2 � 1

8z
CO.z�2/

�
; (25)

and

Km.z/ D
r
�

2z
e�z

�
1C 4m2 � 1

8z
CO.z�2/

�
: (26)

Furthermore, for z ! 0 we have

Im.z/ � 1

�.mC 1/

�z
2

�m
; m 2 Z (27)

and 8
<̂

:̂

Km.z/ � �.m/

2

�2
z

�m
; m ¤ 0;

K0.z/ � � ln
�z
2

�
:

(28)

Recall �.m/ D .m � 1/Š.
For the asymptotics of derivatives the following formulae will be useful:

I 0
m.z/ D Im�1.z/C ImC1.z/

2
(29)

and

K 0
m.z/ D �Km�1.z/CKmC1.z/

2
: (30)

Furthermore, since Zm D Z�m, where Zm D Im; Km we, for example, have

I 0
0.z/ D I1.z/; K 0

0.z/ D �K1.z/: (31)
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Spectral estimates

for the Heisenberg Laplacian

on cylinders

Hynek Kovařík, Bartosch Ruszkowski, and Timo Weidl

Dedicated to Pavel Exner on the occasion of his 70th birthday

1 Introduction

Let� � R3 be an open bounded domain. We consider the Heisenberg Laplacian on
� with Dirichlet boundary condition, formally given by

A.�/ WD �X21 � X22 with X1 WD @x1
C x2

2
@x3
; X2 WD @x2

� x1

2
@x3
:

This operator is associated with the closure of the quadratic form

aŒu� WD
ˆ

�

jX1u.x/j2 C jX2u.x/j2dx; (1)

initially de�ned on C1
0 .�/. The study of the Heisenberg Laplacian, also called

Kohn Laplacian, appears in different �elds of mathematics like for example quan-
tum mechanics, harmonic analysis, representation theory, control theory and sub-
Riemannian geometry.

In the literature this operator appears with different multiplication factor in front
of @x3

. In general we do not distinguish between these operators since they can be
transformed into each other by a simple substitution depending on the x3-variable.
In this work we use the Heisenberg Laplacian with normalized commutation relation,
which is from mathematical point of view more comfortable.

It is known, see, e.g., [6], [7], and [9], that A.�/ has purely discrete spectrum.
We denote by .�k.�//k2N the non-decreasing unbounded sequence of the eigenval-
ues of A.�/, where we repeat entries according to their �nite multiplicities. We are
interested in uniform upper bounds on the quantity

Tr .A.�/� �/� D
1X

kD1
.�k.�/ � �/�:
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In [7] Hansson and Laptev proved the following Berezin-type inequality for A.�/:

Tr .A.�/ � �/� � j�j
96
�3 for all � > 0: (2)

It is also shown in [7] that

1X

kD1
.� � �k.�//C D j�j

96
�3 C o.�3/ as � ! C1; (3)

which implies that the constant 1
96

on the right-hand side of (2) is sharp.
Nevertheless, the authors of the present paper proved in [9] that inequality (2) can

be improved in the following sense; for a any bounded domain � � R3, there exists
a constant C.�/ > 0 such that for any � � 0 it holds that

Tr .A.�/� �/� � max
°
0;

j�j
96
�3 � C.�/ �2

±
: (4)

In other words, a negative remainder term of a lower order can be added to the right-
hand side of (2) without violating the inequality.

In this paper we will prove that the order of the remainder term in (4) can be
further improved if we consider cylindrical domains of the type � D ! � .a; b/,
where ! � R2 is open and bounded, and a; b 2 R are such that a < b. In particular
for cylinders with convex cross-section ! our main result, Theorem 2.3, implies that

Tr .A.�/� �/� � max
°
0;

j�j
96

�3 � �2C1=4

27 � 35=2

j�j
R.!/3=2

±
; (5)

where R.!/ is the in-radius of !, see Corollary 2.7. The proof of (5) is based on the
unitary equivalence of A.�/ to the two-dimensional Laplacian with constant mag-
netic �eld. To estimate the remainder term we use a boundary estimate for the mag-
netic Laplacian based on an application of a Hardy inequality in the spirit of [5], see
Proposition 3.1.

2 Notation and main results

As for the cross-section !, throughout the paper we will suppose that the following
condition is satis�ed.

Assumption 2.1. ! � R2 is open bounded and simply connected.
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In the sequel we will decompose the vector x D .x0; x3/ 2 R3. Let us denote by

ı.x0/ WD dist.x0; @!/;

the distance function between a given x0 2 ! and @!. The in-radius of ! is then
given by

R.!/ WD sup
x02!

ı.x0/:

Hardy inequality. Let c D c.!/ be de�ned by

c�2 WD inf
u2C1

0 .!/

ˆ

!

jrx0u.x0/j2dx0

ˆ

!

ˇ̌
ˇu.x

0/
ı.x0/

ˇ̌
ˇ
2

dx0
; (6)

where r 0
x WD .@x1

; @x2
/. Clearly, c is the best constant in Hardy’s inequality

ˆ

!

u.x0/2

ı.x0/2
dx0 � c2

ˆ

!

jrx0u.x0/j2dx0; u 2 C1
0 .!/: (7)

Remark 2.2. Under assumption 2.1 it follows from [1] that

2 � c � 4:

The best possible value of c is c D 2. For a survey on Hardy inequalities we refer
to [14] and [3].

To continue we de�ne, for any ˇ > 0, the set !ˇ by

!ˇ WD ¹x0 2 ! j ı.x0/ < ˇº;
and introduce the quantity

l.!/ WD .b � a/ inf
0<ˇ�R.!/

j!ˇ j
ˇ

:

Now we can state the main result of this paper.

Theorem 2.3. Let� WD ! � .a; b/ and let c is given by (6). Then

Tr.A.�/ � �/� � max
°
0;

j�j
96

�3 �ƒ
±
; (8)

where

ƒ WD �
.2cC5/=.cC2/

.1C 2=c/

96
l.!/

.2cC2/=.cC2/ j�j�c=.cC2/ .4c C 4/�.2cC2/=.cC2/;

holds for all � � 0.
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Remark 2.4. Note that the order of the remainder term is larger than �2 whenever
c is �nite. So far the order of the second term in the asymptotic expansion (3) is not
known.

Remark 2.5. For analogous improvements of the classical spectral estimates ob-
tained in [2, 11] for Dirichlet Laplacian on bounded domains we refer to [13], [10],
[15], [16], and references therein.

Remark 2.6. Following [9] it can be shown that l.!/ is strictly positive. In particular,
it holds l.!/ � .b � a/R.!/� .

Corollary 2.7. Let � WD ! � .a; b/. If ! is convex, then

Tr .A.�/ � �/� � max
°
0;
1

96
j�j�3 � �2C1=4 1

27 � 32 p
3

j�j
R.!/3=2

±

holds for all � � 0.

Proof. In case that ! is convex we have c D 2 in (6), see, e.g., [3]. In addition, j!ˇj=ˇ
is a decreasing function of ˇ on .0;R.!/�, see Lemma 4.2 in [8]. Hence we compute

l.!/ D j�j
R.!/

and simplify the constant in Theorem 2.3.

3 Preliminaries

3.1 Magnetic Dirichlet Laplacian

Let Pk;B be the orthogonal projection onto the k-th Landau level B.2k � 1/ of the
Landau Hamiltonian with constant magnetic �eld for B > 0 in L2.R2/ and k 2 N.
Denote by Pk;B.x; y/ the integral kernel of Pk;B. We will need these well-known
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characteristics

Pk;B.y; y/ D 1

2�
B; where y 2 R

2; (9a)

ˆ

R2

�
ˆ

�

jPk;B.x; y/j2dy
�
dx D

ˆ

�

�
ˆ

R2

Pk;B.x; y/Pk;B.y; x/dx

�
dy

D
ˆ

�

Pk;B.y; y/dy

D B

2�
j�j:

(9b)

3.2 A boundary estimate for the Heisenberg Laplacian

In this subsection we will derive a boundary estimate for the operator A.�/ which
will be crucial in estimating the size of the remainder term in Theorem 2.3.

Proposition 3.1. Let� WD ! � .a; b/ � R3 and let c be given by (6). Then
ˆ b

a

ˆ

!ˇ

ju.x0; x3/j2dx0dx3 � c2C2=cˇ2C2=c kA.�/ukL2.�/kA.�/1=cukL2.�/

holds for all u 2 Dom.A.�// and any ˇ > 0

For the proof we need the following Lemma.

Lemma 3.2. Let � WD ! � .a; b/ � R3. Then for all u 2 dŒa�, the form domain of
the closure of (1), and any ˇ > 0 we have

ˆ b

a

ˆ

!

ju.x0; x3/j2
ı.x0/2

dx0dx3 � c2 aŒu�:

Proof. Let u be in C1
0 .�/. In addition let us denote by F3 the Fourier transform in

x3-direction, which is a unitary map in L2.R/. Because� is a cylinder, the function
jF3u.x0; �3/j lies in H10.!/ for �xed �3 2 R. Therefore we can apply inequality (7)
to get

ˆ b

a

ˆ

!

ju.x0; x3/j2
ı.x0/2

dx0dx3 D
ˆ

R

ˆ

!

� jF3u.x0; �3/j
ı.x0/

�2
dx0d�3

� c2
ˆ

R

ˆ

!

.rx0 jF3u.x0; �3/j/2dx0d�3:
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Now we set

A.x0/ WD 1

2
.�x2; x1/; (10)

and apply the diamagnetic inequality which states that

j rj j j � j.ir C A/ j a.e.

holds for all  2 H 1.!/, see, e.g., [12]. This gives
ˆ

R

ˆ

!

.rx0 jF3u.x0; �3/j/2dx0d�3

�
ˆ

R

ˆ

!

j.irx0 C �3A.x
0//F3u.x0; �3/j2dx0d�3:

Integration by parts in the x3-direction yields the inequality for u 2 C1
0 .�/. A den-

sity argument completes the proof.

Proof of Proposition 3.1. We follow the proof of Theorem 4 in [5]. Let us �x u 2
Dom.A.�// and set

'.x/ WD .max¹ı.x0/; ˇº/�1=c:

for x WD .x0; x3/ 2 � and ˇ > 0. In what follows we will use the notation

rH D .X1; X2/

to denote the Heisenberg gradient. First we check that 'u 2 dŒa�. Since u 2
Dom.A.�// � dŒa�, ' 2 H 1

0 .!/ and get
ˆ

�

jrH.'.x/u.x//j2dx � 2

ˆ

�

j'.x/rHu.x/j2dx C 2

ˆ

�

jrx0'.x/j2ju.x/j2dx:
(11)

Note that we used here rH'.x/ D rx0'.x/ for all x 2 �. The Eikonal equation

jrx0'.x/j2 D 1 a.e. x 2 �; (12)

and the boundedness of� yield the �niteness of (11). Hence 'u 2 dŒa� and we may
use Lemma 3.2 to get

c�2
ˆ

�

j'.x/u.x/j2
ı.x0/2

dx �
ˆ

�

j'.x/rHu.x/C u.x/rH'.x/j2dx

D h'2rHu;rHui C hu; jrH'j2ui
C 1

2
hrHu; urH.'

2/i C 1

2
hurH.'

2/;rHui;
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where we denote by h�; �i the scalar product in L2.�/. An integration by parts in the
last two terms yields

c�2
ˆ

�

j'.x/u.x/j2
ı.x0/2

dx � Reh'2u; A.�/ui C hu; jrH 'j2ui:

Next we will estimate the �rst term on the right-hand side. To this end we use
Lemma 3.2, which gives

ı�2 � c2A.�/

in the operator sense. Then, by the Heinz inequality, see Lemma 4.20 in [4],

'4 � .ı�2/2=c � .c2A.�//2=c:

Since A.�/�1=c is bounded in L2.�/ we obtain

k'2A.�/�1=ck � c
2=c;

where k � k stands for the operator norm in L2.�/. Hence

jhA.�/u; '2uij D jhA.�/u; '2A.�/�1=cA.�/1=cuij
� kA.�/ukL2.�/c

2=ckA.�/1=cukL2.�/:

So we arrive at

c�2
ˆ

�

j'.x/u.x/j2
ı.x0/2

dx � kA.�/ukL2.�/c
2=ckA.�/1=cukL2.�/ C hu; jrH'j2ui:

(13)

On the other hand, the Eikonal equation (12) implies that

jrH'.x/j2 D jrx0'.x/j2 D c�2ı.x0/�.2=c/�2�¹ı.x0/�ˇº.x
0/;

where �¹ı.x0/>ˇº is the characteristic function of the set ¹x 2 � j ı.x0/ � ˇº. Insert-
ing the above identity into (13) yields

ˆ

¹x2� j ı.x0/<ˇº
ju.x/j2
ı.x0/2

dx � ˇ
2=ckA.�/ukL2.�/c

2C2=ckA.�/1=cukL2.�/:

The result now follows from the estimate
ˆ

¹x2�jı.x0/<ˇº
ju.x/j2dx � ˇ2

ˆ

¹x2� j ı.x0/<ˇº
ju.x/j2
ı.x0/2

dx:



440 H. Kovařík, B. Ruszkowski, and T. Weidl

4 Proof of Theorem 2.3

Here and below we write a vector x 2 R3 as x D .x0; x3/. Let vj denote the or-
thonormal basis of the eigenfunctions of A.�/ for j 2 N;

A.�/vj D �jvj ; kvjkL2.�/ D 1:

Let F3 be the partial Fourier transform in the x3 variable. Then

F3A.R3/F�
3 D

�
i@x1

� 1

2
x2�3

�2
C
�
i@x2

C 1

2
x1�3

�2
D .irx0 C �3A.x

0//2;

where A.x0/ is given by (10). At this point we use the properties of the magnetic
Laplacian, see section 3.1, to obtain

F3A.R3/ u.x0; �3/ D
1X

kD1

j�3j.2k � 1/

ˆ

R2

Pk;�3
.x0; y0/F3u.y0; �3/dy0 (14)

for F3 u.�; �3/ in the domain of the magnetic Laplacian.

4.1 The sharp leading term

First of all we extend for every j 2 N the eigenfunctions by vj .x/ WD 0 for all
x 2 �c . Now we consider

Tr .A.�/ � �/�
D

X

j W �j<�

�kvjk2L2.R3/ � kX1vjk2L2.R3/ � kX2vj k2L2.R3/

D
ˆ

R

X

j W �j<�

�kF3vj .�; �3/k2L2.R2/
�

�
i@x1

� 1

2
x2�3

�
F3vj .�; �3/


2

L2.R2/
d�3

�
ˆ

R

X

j W �j<�


�
i@x2

C 1

2
x1�3

�
F3vj .�; �3/


2

L2.R2/
d�3:
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At this point we apply the spectral decomposition (14) of the free Heisenberg Lapla-
cian. An application of Fatou’s Lemma then yields

Tr .A.�/ � �/� �
ˆ

R

X

j W �j<�

1X

kD1
.� � j�3j.2k � 1//C kfj;k;�3

k2
L2.R2/

d�3;

where

fj;k;�3
.x0/ WD

ˆ

R2

Pk;¸3.x
0; y0/F3vj .y0; �3/dy0

D 1p
2�

ˆ

�

Pk;¸3.x
0; y0/e�iy3�3vj .y

0; y3/dy0dy3

D 1p
2�

hPk;¸3.x0; �/e�i��3; vj .�/iL2.�/:

We split the sum as follows:

Tr .A.�/ � �/� �
ˆ

R

X

kW �>j�3j.2k�1/
.� � j�3j.2k � 1//

1X

jD1
kfj;k;�3

k2
L2.R2/

d�3

�
ˆ

R

X

kW �>j�3j.2k�1/
.� � j�3j.2k � 1//

1X

j W �j ��
kfj;k;�3

k2L2.R2/d�3;

(15)

noting that the �rst term on the right-hand side is positive and the other one is negative.
The completeness of vj and equation (9) yield

1X

jD1
kfj;k;�3

k2
L2.R2/

D 1

2�

ˆ

R2

1X

jD1
jhPk;¸3.x0; �/e�i��3 ; vj .�/iL2.�/j2dx0

D j�3j
4�2

j�j:

To obtain the sharp leading term in (8) we apply this identity in the �rst integral on
the right-hand side of (15). Using the fact that

1X

jD1

1

.2j � 1/2 D �2

8
;
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we get
ˆ

R

X

kW �>j�3j.2k�1/
.� � j�3j.2k � 1//

1X

jD1
kfj;k;�3

k2
L2.R2/

d�3

D j�j
4�2

ˆ

R

X

kW �>j�3j.2k�1/
.� � j�3j.2k � 1//j�3jd�3

D j�j
2�2

1X

kD1

1

.2k � 1/2
ˆ 1

0

s.� � s/Cds

D j�j
96

�3:

Inserting this back into (15) gives

Tr .A.�/ � �/� � j�j
96

�3 �
ˆ

R

1X

kD1
.� � j�3j.2k � 1//C

1X

j W�j ��
kfj;k;�3

k2
L2.R2/

d�3:

(16)

4.2 The lower order term

In order to establish a suitable lower bound on the second term in (16) we use the
same technique as in [8]. The key point of this approach is to estimate the quantity

R� WD
X

j W �j ��
kfj;k;�3

k2
L2.R2/

from below by a power function of �. Note that

R� D j�3j
4�2

j�j �
X

j W �j<�

kfj;k;�3
k2
L2.R2/

D 1

2�

ˆ

R2

ˆ

�

ˇ̌
ˇPk;¸3.x0; y0/e�iy3�3 �

X

j W �j<�

p
2�fj;k;�3

.x0/vj .y0; y3/
ˇ̌
ˇ
2

dy0dy3dx0:

The inclusion ! � !ˇ and an application of the elementary inequality jz � wj2 �
1=2 jzj2 � jwj2, which holds for all z; w 2 C, imply that

R� � j�3j
8�2

.b � a/ j!ˇ j

� 1

2�

ˆ

R2

ˆ b

a

ˆ

!ˇ

ˇ̌
ˇ
X

j W �j<�

hPk;¸3.x0; �/e�i��3; vj .�/iL2.�/
vj .y

0; y3/
ˇ̌
ˇ
2

dy0dy3dx0:
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Next we estimate the negative integral from above. Note that the linear combinations
of vj lie in Dom.A.�//. Therefore we may apply Proposition 3.1 and obtain

1

2�

ˆ

R2

�
ˆ b

a

ˆ

!ˇ

ˇ̌
ˇ
X

j W �j<�

hPk;¸3.x0; �/e�i��3 ; vj .�/iL2.�/
vj .y

0; y3/
ˇ̌
ˇ
2

dy0dy3

!
dx0

� c2C2=cˇ2C2=c�1C1=c 1

2�

ˆ

R2

� X

j W �j<�

jhPk;�3
.x0; �/e�i��3; vj .�/iL2.�/j2

�
dx0

� c2C2=cˇ2C2=c�1C1=c 1

2�

ˆ

R2

�
ˆ

�

jPk;�3
.x0; y0/j2dy0dx3

�
dx0

D c2C2=cˇ2C2=c�1C1=c j�j
4�2

j�3j;

which yields the following lower bound on R�:

R� � j�3j
8�2

.b � a/j!ˇ j � c2C2=cˇ2C2=c�1C1=c j�j
4�2

j�3j

� j�3j
8�2

ˇ.l.!/ � 2c2C2=cˇ1C2=c�1C1=cj�j/:

Now we set

ˇ1C2=c D l.!/

c2C2=c�1C1=c.4C 4=c/j�j ;

which is possible for � � �1.�/, because of

ˇ1C2=c � 1

c2C2=c�1.�/1C1=c.4C 4=c/R.!/
� R.!/1C2=c

4
:

The last inequality was obtained by applying Proposition 3.1 to u D v1 and ˇ D
R.!/. Summing up we thus arrive at

R� � j�3j
8�2

��.cC1/=.cC2/l.!/
.2cC2/=.cC2/j�j�c=.cC2/.2C 4=c/.4c C 4/�.2cC2/=.cC2/

D ��.cC1/=.cC2/G.�/j�3j;

where

G.�/ WD l.!/
.2cC2/=.cC2/

8�2
j�j�c=.cC2/.2C 4=c/.4c C 4/�.2cC2/=.cC2/:
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This in combination with (16) gives

Tr .A.�/ � �/�

� j�j
96

�3 � G.�/��.cC1/=.cC2/

ˆ

R

X

kW �>j�3j.2k�1/
.� � j�3j.2k � 1//j�3jd�3:

To �nish the proof we note that

1X

kD1

ˆ 1

0

.� � �3.2k � 1//C�3d�3 D
1X

kD1

1

.2k � 1/2

ˆ 1

0

s.� � s/Cds D �2�3

48
:

This gives the estimate stated in Theorem 2.3.

Acknowledgements. Hynek Kovařík was supported by the Gruppo Nazionale per
Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Isti-
tuto Nazionale di Alta Matematica (INdAM). The support of MIUR-PRIN2010-11
grant for the project “Calcolo delle variazioni” (Hynek Kovařík) is also gratefully
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Variational proof of the existence of eigenvalues

for star graphs

Konstantin Pankrashkin

Dedicated to Pavel Exner on the occasion of his 70th birthday

1 Introduction

The mathematically rigorous study of multidimensional Schrödinger operators with
potentials supported by hypersurfaces was initiated in 1994 by Brasche, Exner, Ku-
perin and Šeba [2]. The two-dimensional Hamiltonians with interactions supported
by curves have become a prominent class of solvable models of quantum mechanics
[8] and are usually referred to as leaky quantum graphs. A summary of various ques-
tions and results in the spectral theory of such operators can be found in the review
by Exner [7], and for the most recent developments we refer to the papers [1], [5],
[10], [14], [15], [17], and [18] and to Chapter 10 in the recent monograph by Exner
and Kovařík [11].

In the present contribution, we are interested in some properties of Schrödinger
operators with ı-interactions supported by the so-called star graphs. By a star graph
� we mean a subset of R2 obtained as the union of �nitely many rays emanating
from the origin. If .r; �/ is the standard polar coordinate system, then � is naturally
identi�ed with a family .�1; : : : ; �N / in which 0 � �1 < � � � < �N < 2� by

� WD
N[

jD1

°
.r; �/W � D �j ; r � 0

±
:

The associated Schrödinger operator H�;˛ D �� � ˛ı� , where ı� is the Dirac
ı-distribution supported by � and ˛ > 0 is a coupling constant, is de�ned as the
unique self-adjoint operator inL2.R2/ associated with the closed lower semibounded
quadratic form

Q�;˛.u/ D
“

R2

jruj2dx � ˛
ˆ

�

juj2ds; u 2 H 1.R2/:

where ds is the one-dimensional Hausdorff measure, cf. [2]. Such con�gurations
appear naturally as a mathematical model for a junction of quantum wires, and they
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were �rst analyzed by Exner and Němcová [12] and [13]. The basic spectral proper-
ties of the operator are well known: the essential spectrum coincides with the semi-
axis Œ�˛2=4;C1/, and the discrete spectrum is non-empty except in the degenerate
cases when � is a single ray (N D 1) or a straight line (N D 2 and j�1 � �2j D �).
Despite the simple geometrical picture, the only available proof of the existence of
eigenvalues is based on a rather involved analysis of integral operators carried out
by Exner and Ichinose [9]. On the other hand, by the min-max principle, the non-
emptiness of the discrete spectrum would follow from the existence of a trial function
v 2 H 1.R2/ satisfying the strict inequality

Q�;˛.v/ < �˛
2

4
kvk2

L2.R2/
: (1)

Surprisingly, the construction of such a function appeared to be a dif�cult task. The
construction of Exner and Němcová [13] works only if there is a pair of rays with
j�j � �k j mod 2� < 0:092. Brown, Eastham, and Wood [3], [4], and [6] managed
to �nd a trial function for all possible con�gurations with N � 3 as well as for the
con�gurations withN D 2 and j�1��2j < 0:9271. In the present note we show how
to construct such a function for all possible cases (Theorem 2.1), and our approach
uses a likeliness between the star graphs and a spectral problem of the surface su-
perconductivity with a similar geometry discussed by Lu and Pan [19] and Helffer
andMorame [16]. We remark again that Theorem 2.1 itself does not provide any new
spectral information, but suggests a newmethod to show the presence of a non-empty
discrete spectrum as an alternative to the analytical proof by Exner and Ichinose [9].
On the other hand, the presence of explicitly given trial functions allows one to ob-
tain a universal upper bound for the lowest eigenvalue (Theorem 3.1), which is a new
result.

2 Construction of a trial function

By the min-max principle, it is suf�cient to consider the case N D 2 (a broken
line), then, up to isometries, all possible con�gurations can be described by a single
parameter � 2 .0; �=2/ through � D �C [ �� with �˙ WD ¹.t;˙t tan �/W t > 0º,
and the associated operator H�;˛ will be denoted byH.�; ˛/.

We remark �rst that in order to show that the discrete spectrum is non-empty it is
suf�cient to consider the problem in the half-plane R � RC, i.e., to �nd a function
u 2 H 1.R � RC/ satisfying

“

R�RC
jruj2dx � ˛

ˆ

�C
juj2dx < �˛

2

4
kuk2

L2.R�RC/
;
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as its extension v to the whole of R2 by parity automatically satis�es (1). For subse-
quent constructions, it is handy to perform an additional rotation to put the support
of the interaction onto the positive semi-axis of ordinates. In other words, we will
work with the domain � WD ¹.x1; x2/W x1 < x2 tan �º and the quadratic form

Q.u/ D
“

�

jruj2dx � ˛
ˆ

RC
ju.0; x2/j2dx2; u 2 H 1.�/:

Theorem 2.1. Pick any � 2 .0; cot2 �/ and any Lipschitz function �WR ! Œ0; 1�

with �.t/ D 1 for jt j � 1 and �.t/ D 0 for jt j � 2, then for suf�ciently large n > 0
the function u de�ned by

u.x1; x2/ D e�˛jx1j=2
� 2
˛

1RC.x2/ � 1

˛
e�˛jx2j tan � sgn x2

��
�
�x2
n

�
(2)

satis�es the strict inequality

Q.u/ < �˛
2

4
kuk2

L2.�/
:

Proof. For further use, denote

F.t/ WD
ˆ t

�1
e�˛jx1jdx1 D 2

˛
1RC.t /� 1

˛
e�˛jt j sgn t:

For the functions u of the form u.x1; x2/ D e�˛jx1j=2g.x2/ with real-valued g we
have

kuk2
L2.�/

D
ˆ

R

ˆ x2 tan �

�1
e�˛jx1jg.x2/2dx1dx2 D

ˆ

R

g.x2/
2F.x2 tan �/dx2: (3)

Furthermore,

Q.u/ D ˛2

4

ˆ

R

g.x2/
2

ˆ x2 tan �

�1
e�˛jx1jdx1dx2

C
ˆ

R

g0.x2/2
ˆ x2 tan �

�1
e�˛jx1jdx1dx2 � ˛

ˆ

RC
g.x2/

2dx2:

Due to

˛2

4

ˆ x2 tan �

�1
e�˛jx1jdx1 D ˛2

4
F.x2 tan �/

D �˛
2

4
F.x2 tan �/C ˛2

2
F.x2 tan �/

D �˛
2

4
F.x2 tan �/C ˛ 1RC.x2/ � ˛

2
e�˛jx2j tan � sgnx2
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we have

Q.u/ D �˛
2

4

ˆ

R

g.x2/
2F.x2 tan �/dx2 C

ˆ

R

g0.x2/2F.x2 tan �/dx2

� ˛

2

ˆ

R

g.x2/
2e�˛jx2j tan � sgn x2dx2:

(4)

Using the integration by parts we obtain

ˆ

R

g.x2/
2e�˛jx2j tan � sgnx2dx2 D 2

˛
cot �
ˆ

R

g.x2/g
0.x2/e�˛jx2j tan � dx2

D 2

˛
cot �
ˆ

R

g.x2/g
0.x2/F 0.x2 tan �/dx2;

(5)

and the substitution of (3) and (5) into (4) gives the representation

Q.u/ D � ˛2

4
kuk2

L2.�/
CR.g/;

R.g/ WD
ˆ

R

g0.x2/.g0.x2/F.x2 tan �/ � g.x2/F
0.x2 tan �/ cot �/dx2:

Hence, we need to �nd a function g with R.g/ < 0.

Pick � 2 .0; cot2 �/ and introduce a function g� by g�.x2/ D F.x2 tan �/�, then

R.g�/ D � tan2 �.� � cot2 �/
ˆ

R

e�2˛jx2j tan �F.x2 tan �/2��1dx2 < 0:

Remark that the integral is �nite, but the function g� has a non-zero �nite limit at
C1, and the associated function u does not belong to H 1.�/ due to (3).

Choose a Lipschitz function �WR ! Œ0; 1�with�.t/ D 1 for jt j � 1 and�.t/ D 0

for jt j � 2, and for n > 0 denote hn WD g��. �=n/. By construction, the associated
functions un given by

un.x1; x2/ D e�˛jx1j=2hn.x2/; (6)
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belong to H 1.�/ and coincide with (2). In addition,

R.hn/ �R.g�/

D
ˆ

R

�
�
�x2
n

�2
� 1

�
g0
�.x2/.g

0
�.x2/F.x2 tan �/

� g�.x2/F 0.x2 tan �/ cot �/dx2

C 1

n

ˆ

R

�
�x2
n

�
�0
�x2
n

�
.2g�.x2/g

0
�.x2/F.x2 tan �/

� g�.x2/2F 0.x2 tan �/ cot �/dx2

C 1

n2

ˆ

R

�0
�x2
n

�2
g�.x2/

2F.x2 tan �/dx2

DW I1 C I2 C I3:

Due to the �niteness of R.g�/, for large n we have

jI1j �
ˆ

Rn.�n;n/
jg0
�.x2/.g

0
�.x2/F.x2 tan �/ � g�.x2/F 0.x2 tan �/ cot �/jdx2

D � tan2 � � j� � cot2 � j
ˆ

Rn.�n;n/
e�2˛jx2j tan �F.x2 tan �/2��1dx2

D o.1/:

Furthermore,

jI2j D
ˇ̌
ˇ̌1
n

ˆ

R

.2� tan � � cot �/�
�x2
n

�
�0
�x2
n

�
e�˛jx2j tan �F.x2 tan �/2� dx2

ˇ̌
ˇ̌

� j2� � cot2 � j � tan � � k�0k1
n

ˆ

R

e�˛jx2j tan �F.x2 tan �/2� dx2

D O

�1
n

�

due to the convergence of the integral. Finally, as the integrand is bounded, we have

jI3j � 1

n2

�
ˆ �n

�2n
C
ˆ 2n

n

k�0k21 g�.x2/
2F.x2 tan �/dx2

�
D 1

n2
� O.n/ D O

�1
n

�
;

and we arrive at R.hn/ D R.g�/ C o.1/ as n tends to C1. As R.g�/ < 0, we
have R.hn/ < 0 for large n, which shows that the functions (6) have the sought
property.
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3 Upper bound for the lowest eigenvalue

We remark �rst that various estimates for the lowest eigenvalue �.�; ˛/ of H.�; ˛/
were obtained in earlier works. In particular, Duchêne and Raymond [5] showed that

�.�; ˛/ D �˛2Œ1 � c1�2=3 C O.�/�; � ! 0C; (7)

and Exner and Kondej [10] proved that

�.�; ˛/ D �˛2
h1
4

C c2

��
2

� �
�4

C o
���
2

� �
�4�i

; � ! .�=2/�; (8)

where c1 and c2 are some explicit positive constants.
Recall that by the min-max principle there holds �.�; ˛/ � Q.v/=kvk2

L2.�/
for any

non-zero v 2 H 1.�/. We would like to use the trial functions u from Theorem 2.1
to obtain an explicit upper estimate for the eigenvalue valid for all values of � . As
the limit limn!C1 Q.u/=kuk2

L2.�/
D �˛2=4 coincides with the bottom of the essential

spectrum, we cannot hope for the best possible result. Nevertheless, the estimate and
the method can be of some interest as, to our best knowledge, no analogous bound
has been available so far.

Theorem 3.1. For any � 2 .0; �=2/ there holds

�.�; ˛/ � �˛2
�1
4

Cƒ.�/
�
;

where

ƒ.�/ WD 3 cos6 �.22 cos
2 � � 1/2

2.1C 2 cos2 �/3.108C 180 cos2 � � 132 cos4 � C 45 cos6 � � 5 cos8 �/
(9)

is strictly positive.

A comparison with (7) and (8) shows that the upper estimate is away of an optimal
one. For � close to 0 our estimate gives �.�; ˛/ � �99˛2=392 C O.�/ which is very
weak when compared with the true behavior given by (7). At � D �=2, the value of
ƒ.�/ vanishes at the tenth order, which is also very far from the true fourth order
given in (8). Our bound resulted from various experiments with the parameters and
used a number of very rough inequalities, and the interested reader should feel free
to improve the estimate using an alternative choice of parameters.
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Proof. The result is based on a more accurate estimate of the quantities appearing in
the proof of Theorem 2.1 for an explicit choice of the function � and of the parame-
ter �. Namely, we set

�.t/ WD

8
ˆ̂<
ˆ̂:

1; jt j � 1;

2 � jt j; jt j 2 .1; 2/;
0; jt j � 2;

� WD cos2 �;

then k�0k1 D 1. We have

R.g�/ D � tan2 �.� � cot2 �/

˛2��1

�
ˆ 0

�1
e.2�C1/x2 tan � dx2

C
ˆ C1

0

e�2˛x2 tan � .2 � e�˛x2 tan � /2��1dx2
�
:

We calculate
ˆ 0

�1
e.2�C1/x2 tan � dx2 D 1

.2�C 1/˛ tan �

and, using the change of variables s D e�˛x2 tan � ,

ˆ C1

0

e�2˛x2 tan � .2� e�˛x2 tan � /2��1dx2

D 1

˛ tan �

ˆ 1

0

s.2� s/2��1ds

D 1

˛ tan �

ˆ 1

0

.2.2� s/2��1 � .2� s/2�/ds

D 1

˛ tan �

� 22� � 1

�
� 22�C1 � 1

2�C 1

�
;

which gives

R.g�/ D 1

˛2�
tan � .� � cot2 �/.22� � 1/

2�C 1
D �cos3 �.22 cos

2 � � 1/
sin �.1C 2 cos2 �/

:
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In what follows we will use the following estimates valid for s 2 Œ0; 1� due to the
convexity argument:

1

1C 2s
� 1� 2

3
s;

1

.1C 2s/2
� 1� 8

9
s; 22s � 1C 3s:

We estimate

jI1j � cos4 �

˛2��1

�
ˆ �n

�1
e.2�C1/˛x2 tan � dx2

C
ˆ C1

n

e�2˛x2 tan � .2� e�˛x2 tan � /2��1dx2
�

� cos4 �

˛2��1

�
ˆ �n

�1
e.2�C1/˛x2 tan � dx2 C 22�

ˆ C1

n

e�2˛x2 tan � dx2

�

D cos4 �

˛2��1
� 1

.2�C 1/˛ tan �
e�.2�C1/˛n tan � C 22�

2˛ tan �
e�2˛n tan �

�

� cos4 �

˛2��1
� 1

..2�C 1/˛ tan �/2n
C 22�

.2˛ tan �/2n

�

� 1

˛2�C1 � cos
6 �

sin2 �

� 1

.2�C 1/2
C 1

4
� 22�

�
� 1
n

� 1

˛2�C1 � cos
6 �

sin2 �

�
1 � 8

9
�C 1

4
.1C 3�/

�
� 1
n

D 1

˛2�C1 � 45 cos
6 � � 5 cos8 �
36 sin2 �

� 1
n

and

jI2j � j2 cos2 � � cot2 � j � tan �
n˛2�

�
ˆ 0

�1
e.2�C1/˛x2 tan � dx2

C 22�
ˆ 1

0

e�˛x2 tan � dx2

�

D j2 sin2 �1j � cos �
n˛2� sin �

� 1

.2�C 1/˛ tan �
C 22�

˛ tan �

�

D 1

˛2pC1
cos2 � � j2 sin2 � � 1j

sin2 �

� 1

2 cos2 � C 1
C 22 cos

2 �
�

� 1

˛2pC1
cos2 �

sin2 �

�
1 � 2

3
cos2 � C 1C 3 cos2 �

�

D 1

˛2pC1 � 72 cos
2 � C 84 cos4 �

36 sin2 �
� 1
n
:
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Finally, the bounds jF j � 1=˛ on R� and jF j � 2=˛ on RC give

jI3j � 1

n2

�
ˆ �n

�2n
C
ˆ 2n

n

g�.x2/
2F.x2 tan �/dx2

�

� 1

n2

�� 1
˛

�2�C1
nC

� 2
˛

�2�C1
n
�

D 1

˛2�C1 .1C 22�C1/ � 1
n

� 1

˛2�C1 .1C 2.1C 3�// � 1
n

D 1

˛2�C1 � .3C 6 cos2 �/ � 1
n

D 1

˛2�C1 � 108 sin
2 � C 216 sin2 � cos2 �

36 sin2 �
� 1
n
:

As a result, we obtain

R.hn/ � R.g�/C jI1j C jI2j C jI3j � �
�
a � b

n

�
;

a WD �R.g�/; b WD 1

˛2�C1 � B

36 sin2 �
;

B WD 108 sin2 � C 72 cos2 � C .84 cos2 � C 216 sin2 �/ cos2 �

C 45 cos6 � � 5 cos8 �

D 108� 36 cos2 � C .216 � 132 cos2 �/ cos2 � C 45 cos6 � � 5 cos8 �
D 108C 180 cos2 � � 132 cos4 � C 45 cos6 � � 5 cos8 �;

implying

Q.u/C ˛2

4
kuk2

L2.�/
� R.hn/ � �

�
a � b

n

�
:

On the other hand,

kuk2
L2.�/

�
ˆ 2n

�2n
g�.x2/

2F.x2 tan �/dx2

D
ˆ 0

�2n
F.x2 tan �/2�C1dx2 C

ˆ 2n

0

F.x2 tan �/2�C1dx2

� 2n
� 1
˛

�2�C1
C 2n

� 2
˛

�2�C1

� 1

˛2�C1 � .2C 4 � 22�/ � n
� cn;
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with

c WD 6.1C 2 cos2 �/

˛2pC1 ;

and we have

�.�; ˛/ WD �˛
2

4
� �.�; ˛/ � an � b

cn2
provided an > b:

The right-hand side is optimized by n D 2 b=a resulting in

�.�; ˛/ � a2

4bc
D ˛2ƒ.�/

with ƒ.�/ given in (9).
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On the boundedness and compactness

of weighted Green operators

of second-order elliptic operators

Yehuda Pinchover

Dedicated to Pavel Exner on the occasion of his 70th birthday

1 Introduction

Positive (Dirichlet) Green functions of second-order linear elliptic operators with real
coef�cients and their induced integral operators are among the most important build-
ing blocks of the elliptic theory for such operators, and in particular, for the qualitative
theory of positive solutions of the corresponding homogeneous equations. In many
problems, and in particular in the study of positive solutions, the underling topology
is the open compact topology, i.e., the topology of locally compact convergence (e.g.,
in the Martin boundary theory, in the study of the heat kernel, and in criticality the-
ory). On the other hand, when dealing with spectral theory of such operators, in the
study of semigroups generated by such operators, or in the study of well-posedness
of boundary value problems, one should usually specify a relevant Banach space.
Frequently, one takes one of the classical Lebesgue spaces as the underlying space,
but a priori, it is not clear why these spaces are the appropriate functional spaces to
study various elliptic problems for a speci�c operator in a given domain.

In the present paper, we introduce for a given second-order linear elliptic operator
Lwhich is de�ned on a noncompact manifold� of dimension d and admits a positive
Green function, and for a given positive weight function W , a family of weighted
Lebesgue spacesLp.�p/, where 1 � p � 1. Fix� � �0, where �0 D �0.L;W;�/

is the generalized principal eigenvalue (see (3)). The weight �p is given by

�p WD ��1.�W Q�/1=p D
´
��1.�W Q�/1=p 1 � p < 1;

��1 p D 1;

where � (resp. Q�) is a �xed positive solution of the equation .L� �W /u D 0 (resp.
.L? � �W /u D 0) in �, and L? is the formal adjoint of L (see Section 2 for a
detailed discussion on these spaces, and also for the needed terminology and some
preliminary results).
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Remark 1.1. Clearly, if the positive Liouville theorem holds for L� WD L � �W

and L? � �W in �, then Lp.�p/ is uniquely de�ned. In addition, L1.�1/ is always
independent of � while L1.�1/ is independent of Q� and W . In [36], L1.�1/
was introduced, and some properties of weighted Green operators on L1.�1/ were
studied. Moreover, if L is symmetric, then one may choose Q� D �, and then
L2.�2/ D L2.�;W /, and hence, this space is � independent. We also note that
¹Lp.�p/ºp�1 is a family of real interpolation spaces. The latter observation is used
to prove several results of the paper.

The aim of the present paper is to study some fundamental properties of the in-
duced weighted Green operators G� on the weighted Lebesgue spaces Lp.�p/. Here

G�f .x/ WD
ˆ

�

G�L�
.x; y/W.y/f .y/d�.y/;

where G�L�
is the positive minimal Green function of the elliptic operator L� in �,

and � < � � �0.

We prove in Section 3 that G� is bounded on Lp.�p/ for any 1 � p � 1 with
a bound independent of p, �, and Q� (see Theorem 3.1). In Section 4, we study the
existence and uniqueness of a principal eigenfunction for these weighted Green op-
erators on Lp.�p/, and the simplicity of the corresponding principal eigenvalue for
1 � p � 1. In particular, Theorem 4.4 gives suf�cient conditions under which the
positive solution � is an eigenfunction of G� in Lp.�p/. Theorem 4.5 asserts that in
the positive critical case � is the unique (up to a multiplicative constant) nonnega-
tive eigenfunction of the operator G��Lp.�p/. In the special cases p D 1; 2;1, we
obtain simplicity results of the corresponding principal eigenvalue (see theorems 4.5,
4.6 and 4.7, respectively).

Next, we show in Section 5 that for 1 � p < 1, the weighted Green operator
is a resolvent of a densely de�ned closed operator Ap such that Ap D �W �1L on
C1
0 .�/. It turns out that under some further assumptions, Ap generates a strongly

continuous contraction semigroup (see Theorem 5.2). Finally, in Section 6 we prove
that if W is a (semi)small perturbation of L in �, then for any 1 � p � 1, the
associated weighted Green operator is compact on Lp.�p/ (Theorem 6.1), and the
corresponding spectrum is p-independent (Theorem 6.4).

We note that if in additionL is symmetric andW is strictly positive, then it follows
from [36] that for any k � 1 the quotient �k=� has a continuous extension up to
the Martin boundary of the pair .�;L/, where � is the ground state of L with a
principal eigenvalue �0 D �0.L;W;�/, and �k is the k-th (weighted) eigenfunction
in L2.�;Wd�/. It follows from the p-independence of the spectrum that in fact,
�; �k 2 Lp.�p/, for all 1 � p � 1.
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Norm estimates for the Green operator has been studied by many authors. For
example, for second-order elliptic operators with up to the boundary regular coef�-
cients de�ned on smooth bounded domains, one may use the well known behavior
of the Green function [19] to prove the boundedness of the Green operators in Lp

spaces. Weighted L1-norm estimates for G� has been established by Hansen in [20]
under the assumption that the Green function satis�es a pointwise generalized trian-
gle property. In [2], H. Aikawa proved for L D �� and W D 1, that under certain
conditions on �, the Green operator G is a bounded linear operator from Lp to L1,
where d=2 < p � 1. We also mention that A. Grigor0yan and J. Hu [18] have shown
that for a regular Dirichlet form, the Green operator is bounded on L2, while for dif-
fusion operators with bounded drifts onRd , A. T. Hill has established in [21] bounds
on kG�kL1.Rd /.

Let us mention some results concerning the existence, uniqueness and simplic-
ity of the principal eigenvalue in nonsmooth domains. In the celebrated paper [8],
H. Berestycki, L. Nirenberg and S. R. S. Varadhan considered a general bounded
domain and a uniformly elliptic operator L with bounded coef�cients, and proved
(in the framework of strong solutions) the existence of a unique and simple princi-
pal eigenvalue (for related results in unbounded domains see [9]). Moreover, in [10]
I. Birindelli proved that for bounded domains such Green operators are compact on
Ld .�/. Various suf�cient conditions that guarantee thatL has a pure point-spectrum
in certain spaces are given for example in [7], [24], [28], and references therein.

Finally, the problem of the p-independence of the spectrum of generators of semi-
groups onLp was raised by B. Simon in [41] for Schrödinger semigroups in Rd and
has been studied in many papers, see for example [5], [14], [15], [23], [26], [27],
[39], [40], [41], [42], and references therein.

2 Preliminaries

2.1 Elliptic operators and positive solutions

Let � be a domain in Rd , or more generally, a noncompact connected C 2-smooth
Riemannian manifold of dimension d . By a positive function we mean a strictly
positive function. We assume that � is a positive measure on �, satisfying d� D
f vol with f a positive measurable function; vol being the volume form of� (which
is just the Lebesgue measure in the case of a domain � in Rd ). We write �1 b �2
if �2 is open, �1 is compact and �1 � �2. Denote by B.x0; ı/ the open ball of
radius ı > 0 centered at x0. Let 1 be the constant function on � taking at any point
x 2 � the value 1. For a matrix A.x/ D �

aij .x/
�
and a vector �eld b.x/ D .bj .x//
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we denote

.A.x/ �/i WD
dX

jD1
aij .x/ �j ; b.x/�� WD

dX

jD1
bj .x/ �j ; where �D .�1; : : : ; �d /2R

d :

We associate to � a �xed exhaustion ¹�kº1
kD1, i.e., a sequence of smooth, rel-

atively compact subdomains such that �1 ¤ ;, �k b �kC1 and
S1
kD1�k D �.

For every k � 1, we denote �?
k

D � n�k .
Let L be a linear, second-order, elliptic operator de�ned on �. We assume that

the coef�cients of L are real, and that in any coordinate system .U I x1; : : : ; xd /, the
operator L is of the divergence form

Lu WD �div.A.x/ruC u Qb.x//C b.x/ � ruC c.x/u: (1)

Here, the minus divergence is the formal adjoint of the gradient with respect to the
measure �.

We assume that for every x 2 � the matrix A.x/ WD Œaij .x/� is symmetric, and
the associated real quadratic form

� � A.x/ � WD
dX

i;jD1
�ia

ij .x/ �j � 2 R
d

is positive de�nite. Moreover, throughout the paper it is assumed that L is locally
uniformly elliptic, and the coef�cients of L are real valued and locally suf�ciently
regular in�. All our results hold for example whenL is of the form (1), andA and f
are locally Hölder continuous, b; Qb 2 Lploc.�IRn; dx/, and c 2 Lp=2

loc .�IR; dx/ for
some p > d . However it would be apparent from the proofs that any conditions that
guarantee standard elliptic regularity theory are suf�cient. By a potential de�ned in
�, we mean a function V 2 Lp=2

loc .�IR;dx/ for some p > d .
The formal adjoint L? of the operatorL is de�ned on its natural spaceL2.�;d�/.

When L is in divergence form (1) and b D Qb, the operator

Lu D �div.AruC ub/C b � ruC cu;

is symmetric in the space L2.�; d�/. Throughout the paper, we call this setting the
symmetric case. We note that if L is symmetric and b is smooth enough, then L is in
fact a Schrödinger-type operator of the form

Lu D �div
�
Aru�C V u; where V WD .c � div b/:
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By a solution v of the equationLu D 0 in�, we mean v 2 W 1;2
loc .�/ that satis�es

the equation Lu D 0 in � in the weak sense. Subsolutions and supersolutions are
de�ned similarly. We denote the cone of all positive solutions of the equationLu D 0

in � by CL.�/.

Remark 2.1. We would like to point out that the theory of positive solutions of the
equation Lu D 0 in � (the so-called criticality theory), and in particular the results
of this paper, are also valid for the class of classical solutions of locally uniformly
elliptic operators of the form

Lu D �
dX

i;jD1
aij .x/@i@juC b.x/ � ruC c.x/u; (2)

with real and locally Hölder continuous coef�cients, and for the class of strong so-
lutions of locally uniformly elliptic operators of the form (2) with locally bounded
coef�cients (provided that the formal adjoint operator also satis�es the same assump-
tions). Nevertheless, for the sake of clarity, we prefer to present our results only for
the class of weak solutions.

Fix a nonzero nonnegative potential W de�ned in �, and for � 2 R denote by
L� the elliptic operator L � �W . Consider the (weighted) generalized principal
eigenvalue of the operator L

�0 D �0.L;W;�/ WD sup¹� 2 R j CL�
.�/ ¤ ;º: (3)

Note that if �0 ¤ �1 (as assumed throughout the present paper), then in fact, �0 D
max¹� 2 R j CL�

.�/ ¤ ;º.
If �0 � 0, then for every k � 1 the Dirichlet Green function G�k

L .x; y/ of
the operator L in �k exists and is positive. By the generalized maximum principle,
¹G�k

L .x; y/º1
kD1 is an increasing sequence converging as k ! 1 either toG�L .x; y/,

the positive minimal Green function of L in �, and then L is said to be a subcritical
operator in � ; or to in�nity and in this case L is critical in �. If CL.�/ D ;, then
L is supercritical in �, see [29] and [32] (cf. [41]).

It follows that L is critical (resp. subcritical) in �, if and only if L? is critical
(resp. subcritical) in �. Clearly, L� is subcritical in � for every � 2 .�1; �0/, and
supercritical for � > �0. Furthermore, if L is critical in �, then �0 D 0, CL.�/
is a one-dimensional cone, and any positive supersolution of the equation Lu D 0

in � is a solution. So, in the critical case, � 2 CL.�/ is uniquely de�ned (up to a
multiplicative positive constant), and such � is called the Agmon ground state of L
in �, see [1], [29], and [32].
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Subcriticality is a stable property in the following sense. If L is subcritical in �
and V is a potential with a compact support in �, then there exists " > 0 such that
L � �V is subcritical, for all j�j < ", see [29] and [32]. On the other hand, if L
is critical in � and V is a nonzero, nonnegative potential, then for any " > 0 the
operator LC "V is subcritical and L � "V is supercritical in �.

De�nition 2.2 (Agmon [1]). Let L be an elliptic operator of the form (1) de�ned in
�. A function u 2 CL.�

?
n/ is said to be a positive solution of the equation Lu D 0

of minimal growth in a neighborhood of in�nity in �, if for any k > n and any
v 2 C.�?

k
/ which is a positive supersolution of the equation Lw D 0 in �?

k
, the

inequality u � v on @�k implies that u � v in �?
k
.

In the sequel, in order to simplify our terminology, we will call a positive minimal
Green function – a Green function, an Agmon ground state – a ground state, and a
positive solution of minimal growth in a neighborhood of in�nity in �, a positive
solution of minimal growth in �.

It turns out that if L is subcritical in �, then for any �xed y 2 � the Green
functionG�L .�; y/ is a positive solution of the equationLu D 0 in�n¹yº of minimal
growth in �. On the other hand, if L is critical in �, then the ground state � is a
(global) positive solution of the equation Lu D 0 in � of minimal growth in �.

Fix a nonzero nonnegative potential W de�ned in �. Let v and Qv be positive
solutions of the equations L�u D 0 and L?�u D 0 in�, respectively, where � � �0.
Then [34] for every � < � we have

ˆ

�

G�L�
.x; y/W.y/v.y/d�.y/ � v.x/

� � �
for all x 2 �;

ˆ

�

G�L�
.x; y/W.x/ Qv.x/d�.x/ � Qv.y/

� � �
for all y 2 �:

(4)

Moreover, in each of the inequalities in (4) either equality or strict inequality holds
for all points in� and � < �. If equality holds for v (resp. Qv), then v (resp. Qv) is said
to be a positive invariant solution of the equation L�u D 0 (resp. L?�u D 0) in �,
or �-invariant solution of the operator L (resp. L?) in �.

Assume now that L�0
is critical in� with �0 2 R, and let � and Q� be the ground

states of L�0
and L?

�0
, respectively. Then (see Theorem 2.1 in [34]) � and Q� are

positive invariant solutions of the equations L�0
u D 0 and L?

�0
u D 0, respectively,
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Hence, for every � < �0 we have
ˆ

�

G�L�
.x; y/W.y/�.y/d�.y/ D �.x/

�0 � �
for all x 2 �;

ˆ

�

G�L�
.x; y/W.x/ Q�.x/d�.x/ D

Q�.y/
�0 � �

for all y 2 �:
(5)

Assume further thatW is a positive function. If � Q� 2 L1.�;W d�/, then L�0
is

called positive-critical in� with respect toW . Otherwise, L�0
is called null-critical

in � with respect to W .

Remark 2.3. Let � � �0, and suppose that L� is a subcritical operator in �. Let v
and Qv be positive solutions of the equations L�u D 0 and L?�u D 0 in �, respec-
tively, such that v Qv 2 L1.�;W d�/. Since for every �xed x (resp. y) the function
G�L�

.x; �/ (resp. G�L�
.�; y/) is a positive solution of the operator L?� (resp. L�) of

minimal growth in �, the integrability condition v Qv 2 L1.�;W d�/ implies that
ˆ

�

G�L�
.x; y/W.y/v.y/d�.y/ < 1 and

ˆ

�

G�L�
.x; y/W.x/ Qv.x/d�.x/ < 1:

(6)
In light of Lemma 2.1 in [35], (6) implies that v and Qv are not �-invariant positive
solutions of the equations L�u D 0 andL?�u D 0 in�, respectively. In other words,
if v 2 CL�.�/ (resp. Qv 2 CL?

�
.�/) is a positive �-invariant solution of the operator

L (resp. L?), and v Qv 2 L1.�;W d�/, then � D �0 and L�0
is positive-critical with

respect to W in �.

The following example, a modi�cation of the counterexamples to Stroock’s con-
jecture given in [35], demonstrates that for � D �0 there exists a subcritical operator
L�0

and a potential W > 0 satisfying all the properties of Remark 2.3.

Example 2.4. Consider the operator L WD ��� on Rd , where d � 3, and � is
a strictly positive smooth function. Let W WD 1. Then L is a subcritical operator
in Rd , and it follows from Liouville’s theorem that the functions v D 1 and Qv D 1=�

are (up to a multiplicative constant) the unique positive solutions of the equations
Lu D 0 and L?u D 0 in Rd , respectively. We claim that there exists a smooth
positive function � so that v Qv D 1=� 2 L1.Rd ; dx/, and �0.L; 1;Rd/ D 0.

Indeed, let 0 < ˇ < 1, and xk WD .k; 0; : : : ; 0/, where, k D 1; 2; : : : . Finally let
¹"kº � .0; 1/ be a sequence satisfying

P1
kD1 "

d�.2Cˇ/
k

< 1. Take a smooth posi-
tive function Qv 2 L1.Rd ; dx/ satisfying Qv.x/�B.xk;"k/D ."k/

�.2Cˇ/. In particular,
v Qv 2 L1.Rd ; 1dx/.
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On the other hand, we clearly have �0.L; 1; B.xk; "k// < C"
ˇ

k
, and therefore,

�0.L; 1;R
d/ D 0. Moreover, by Remark 2.3, the unique positive solution v (resp. Qv)

of the equation L�0
u D 0 (resp. L?

�0
u D 0) is not �0-invariant.

Remark 2.5. We note that Example 2.4 is in fact a strengthening of the counterex-
amples to Stroock’s conjecture given in [35]. It gives an example of a subcritical
operator L on Rd , d � 3, with �0 D 0, such that the operators L and L? do not
admit �0-invariant positive solutions, and in addition, the product of positive entire
solutions of the equations Lu D 0 and L?u D 0 is in L1.Rd /. Recall that if a
Schrödinger-type operator admits a ‘small’ positive solution  in � (and in particu-
lar an L2-positive solution), then the operator is critical in �, and in particular,  is
an invariant positive solution, see [37].

The following notions of small and semismall perturbations play a fundamental
role in criticality theory, see [29], [30], [32], and [33]. Semismall perturbations revisit
in the present paper. It turns out that they guarantee the compactness of the weighted
Green operators in Lp.�p/ for all 1 � p � 1 (see Section 6).

De�nition 2.6. Let L be a subcritical operator in �, and let V be a potential.

(i) We say that V is a small perturbation of L in � if

lim
k!1

²
sup

x;y2�?
k

ˆ

�?
k

G�L .x; z/jV.z/jG�L .z; y/
G�L .x; y/

d�.z/

³
D 0:

(ii) We say that V is a semismall perturbation of L in � if for some (all) �xed
x0 2 � we have

lim
k!1

²
sup
y2�?

k

ˆ

�?
k

G�L .x0; z/jV.z/jG�L .z; y/
G�L .x0; y/

d�.z/

³
D 0:

Remark 2.7. (i) A small perturbation ofL in� is a semismall perturbation ofL and
L? in �, see [30].

(ii) We note that �0 is well de�ned by (3) even if the potential W does not have
a de�nite sign. It turns out (see [30] and [33]) that if L is subcritical and W Š 0 is
a semismall (resp. small) perturbation of L? in �, then �0 > 0, and L�0

is critical
in � with a ground state �. Moreover, for each � < �0 such that the positive Green
function G�L�

exists there exists a positive constant C�;x0;" (resp. C�) such that

.C�;x0;"/
�1G�L�

.x; x0/ � �.x/

� C�;x0;"G
�
L�
.x; x0/ for all x 2 �; dist.x; x0/ > ";

(7a)
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resp.

.C�/
�1G�L�

.x; y/ � G�L .x; y/ � C�G
�
L�
.x; y/ for all x; y 2 �; x ¤ y: (7b)

Since L�0
is critical if and only if L?

�0
is critical, (5) and (7) imply that if W > 0

is a semismall (resp. small) perturbation of L? in �, then L�0
is positive-critical.

In particular, � satis�es (5).

(iii) Murata [31] proved that if L is symmetric and the corresponding (Dirich-
let) semigroup generated by L is intrinsically ultracontractive on L2.�/ (see [16]),
then 1 is a small perturbation of L in �. On the other hand, an example of Bañuelos
and Davis in [6] gives us a �nite area domain � � R2 such that 1 is a small per-
turbation of the Laplacian in �, but the corresponding semigroup is not intrinsically
ultracontractive.

2.2 Functional spaces

Let B be a Banach space and B? its dual. If T WB ! B is a (bounded) operator on
B , we denote by T ? its dual, and the operator norm of T by kT kB . The range and
the kernel of T are denoted by R.T / and N.T /, respectively. We denote by �.T /,
�point.T / and �.T / the spectrum, the point-spectrum, and the resolvent set of the
operator T . If � 2 �.T /, then we denote by R.�; T / WD .�I � T /�1 the resolvent
of T , where I is the identity map on B . For every f 2 B and g? 2 B? we use the
notation hg?; f i WD g?.f /. If T acts on two Banach spacesX and Y , we distinguish
the operators by using the notation T�X , T�Y , respectively.

Let 1 � p < 1, and let w be a �xed (strictly) positive measurable weight func-
tion de�ned on �. Denote the real ordered Banach space

Lp.w/ WD Lp.�;wpd�/ D ¹u j uw 2 Lp.�; d�/º

equipped with the norm

kukp;w WD kuwkp D
�
ˆ

�

ju.x/w.x/jp d�.x/
�1=p

:

For p D 1, let
L1.w/ WD ¹u j uw 2 L1.�; d�/º

equipped with the norm

kuk1;w WD kuwk1 D ess sup
�

.jujw/:
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The ordering onLp.w/ is the natural pointwise ordering of functions. For the purpose
of spectral theory, we consider also the canonical complexi�cation ofLp.w/without
changing our notation.

For 1 � p � 1, let p0 be the usual conjugate exponent of p, so, 1=p C 1=p0 D 1.
It is well-known that for 1 � p < 1, .Lp.w//? D Lp

0
.w�1/, and in particular, the

space Lp.w/ is re�exive for all 1 < p < 1.
LetW; �; Q� be positive continuous functions in �. For 1 � p � 1, denote

�p WD ��1.�W Q�/1=p; Q�p WD Q��1.�W Q�/1=p; (8)

and consider the corresponding family of weighted Lebesgue spaces Lp.�p/, and
Lp. Q�p/.

We note that L1.�1/ is independent of � while L1.�1/ is independent of Q�
and W . Moreover, if Q� D � (which is often the case when L is symmetric), then
L2.�2/ D L2.�;W d�/ and this space is � independent.

It can be easily checked that for 1 � p < 1 we have

.Lp.�p//
? D Lp

0
. Q�p0/; (9)

where the pairing between Lp.�p/ and Lp
0
. Q�p0/ is given by

hg?; f i D
ˆ

�

g?.x/W.x/f .x/d�.x/ for all g? 2 Lp0
. Q�p0/; f 2 Lp.�p/:

Here the duality is provided by the bilinear rather than the sesquilinear form.1

Suppose now that

�W Q� 2 L1.�; d�/;
ˆ

�

�.x/W.x/ Q�.x/d�.x/ D 1: (10)

Then by the Hölder inequality we have the continuous embeddings

L1.�1/ � Lq.�q/ � Lp.�p/ � L1.�1/; (11)

for all 1 � p � q � 1, and for f 2 L1.�1/ we have

kf k1;W Q� D kf k1;�1
� kf kp;�p � kf kq;�q � kf k1;�1 D kf k1;��1 :

1 This is not essential, but simpli�es somewhat the calculations.
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Moreover, kf k1;�1
D kf k1;�1 if and only if jf j D � D 1 almost everywhere.

In particular, � 2 Lp.�p/ for every 1 � p � 1, and (10) implies that

k�k1;�1
D k�kp;�p D k�k1;�1 D 1 for all 1 � p � 1;

so, the norms of the embeddings in (11) equal 1. Moreover, these embeddings are
dense. We also note that if Q� D � (as in the symmetric case), then

.L1.W�//? D L1.��1/ � L2.�;W d�/ � L1.W�/:

Remark 2.8. Throughout the paper we �x an operator L of the form (1), a positive
potential W , � � �0, and �, Q� two positive solutions of the equations L�u D 0 and
L?�u D 0 in �, respectively. We study properties of a family of the corresponding

weighted Green operators on Lp.�p/ and Lp. Q�p/. We note that if � D �0 and L�0

is critical in �, then the spaces Lp.�p/ and Lp. Q�p/ are uniquely de�ned.

Remark 2.9. Let � and Q� be two �xed positive solutions of the equations Lu D 0

and L?u D 0 in �, respectively. For � � �0, de�ne the operator

L�� WD 1

�
L�� D 1

�
L� � �W D L� � �W;

which is called Doob’s �-transform (or the ground state transform with respect to �)
of the operator L�. Note that for � � �0 the operator L� is subcritical in � if and
only if L�� is subcritical in �, and we have

G�
L

�
�

.x; y/ D 1

�.x/
G�L�

.x; y/�.y/:

Clearly, L�1 D 0 and .L�/?.� Q�/ D 0. In particular, L� is a diffusion operator.
We note that for 1 � p � 1, the weighted Lp-spaces associated with the positive
solutions 1 and � Q� of the equations L�u D 0 and .L�/?u D 0, respectively, are
just Lp.�; �W Q� d�/. So, in this case (which corresponds to the class of diffusion
operators) the corresponding one-parameter weights are p-independent.

3 Boundedness of the Green operators

Fix a positive potential W and � � �0. Let � and Q� be two �xed positive solutions
of the equations L�u D 0 and L?�u D 0 in �, respectively. For 1 � p � 1 let �p
and Q�p be the functions de�ned in (8). Note that we do not assume below neither that
� and Q� are invariant solutions nor that the integrability condition (10) is satis�ed.
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For � < �, we introduce the integral operators

G�f .x/ WD
ˆ

�

G�L�
.x; y/W.y/f .y/d�.y/;

G
ˇ
�
f .y/ WD

ˆ

�

G�L�
.x; y/W.x/f .x/d�.x/:

In the present section we study for 1 � p � 1 the boundedness of the weighted
Green operators G� and Gˇ

�
on Lp.�p/ and Lp. Q�p/, respectively.

Theorem 3.1. Let L be an elliptic operator on � of the form (1), and let W be a
positive potential. Fix � � �0, and let � and Q� be two �xed positive solutions of the
equations L�u D 0 and L?�u D 0 in �, respectively. Then

(1) for 1 � p � 1, the operator G��Lp.�p/ (resp. G
ˇ
�

�Lp. Q�p/
) is a well de�ned

bounded and positive improving operator on Lp.�p/ (resp. Lp. Q�p/); moreover,
we have

kG�kLp.�p/ � .� � �/�1; .resp. kGˇ
�

kLp. Q�p/
� .� � �/�1/I (12)

(2) for 1 � p < 1, the operator Gˇ
�

�Lp0
. Q�p0 / is the dual operator of G��Lp.�p/,

and G��Lp0
.�p0 / is the dual of G

ˇ
�

�Lp. Q�p/
I

(3) suppose that � is a �-invariant positive solution of the operator L, and p D 1,
then kG�kL1.�1/ D .� � �/�1I

(4) suppose that � is a�-invariant positive solution of the operatorL satisfying (10),
then, for any 1 � p � 1, kG�kLp.�p/ D .� � �/�1.

Proof. (1) Let f 2 L1.�1/, then by (4)

jG�f .x/j �
ˆ

�

G�L�
.x; y/W.y/jf .y/jd�.y/

� kf k1;�1

ˆ

�

G�L�
.x; y/W.y/�.y/d�.y/

� kf k1;�1
� � � �.x/;

so, kG�kL1.�1/ � .� � �/�1. Similarly, kGˇ
�

kL1. Q�1/ � .� � �/�1.
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Assume now that f 2 L1.�1/, then by the Tonelli–Fubini theorem and (4) we
obtain

kG�f .x/k1;�1
D
ˆ

�

W.x/ Q�.x/
ˇ̌
ˇ̌
ˆ

�

G�L�
.x; y/W.y/f .y/d�.y/

ˇ̌
ˇ̌d�.x/

�
ˆ

�

W.x/ Q�.x/
ˆ

�

G�L�
.x; y/W.y/jf .y/jd�.y/d�.x/

D
ˆ

�

�
ˆ

�

W.x/ Q�.x/G�L�
.x; y/d�.x/

�
W.y/jf .y/jd�.y/

� 1

� � �
ˆ

�

Q�.y/W.y/jf .y/jd�.y/

D kf k1;�1

� � �
:

Hence, kG�kL1.�1/
� .� � �/�1. Similarly, kGˇ

�
kL1. Q�1/

� .� � �/�1.
For 1 < p < 1, the boundedness of G��Lp.�p/ with norm estimate

kG�kLp.�p/ � .� � �/�1

follows now directly from a Riesz–Thorin-type interpolation theorem with weights
proved by Stein, see Theorem 2 in [43].

(2) The duality claim follows now directly from (9).

(3) and (4) follow from part (1) and (5).

Remark 3.2. Theorem 3.1 (and (13)) for 1 < p < 1 follows also from the Schur
test with weights, see Lemma 5.1 in [22]. Indeed, set

K.x; y/ WD G.x; y/

�1�p.y/ Q�.y/ ; w.x; y/ WD �p.y/

�p.x/
; d�.y/ WD �

�p.y/
�p

d�.y/:

Then (4) implies that

ˆ

�

w.x; y/
1=pK.x; y/d�.y/ D

ˆ

�

G�L�
.x; y/W.y/�.y/d�.y/

�.x/
� 1

� � �;

for all x 2 �, and

ˆ

�

w.x; y/�1=p0
K.x; y/d�.x/ D

ˆ

�

G�L�
.x; y/W.x/ Q�.x/d�.x/

Q�.y/ � 1

� � �;
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for all y 2 �. Applying the aforementioned Schur test we get

kG�kLp.�p/ � .� � �/�1:
The Schur test with weights is essentially a theorem of Aronszajn, and in fact fol-

lows from Stein’s Riesz–Thorin-type interpolation theorem with weights, see Theo-
rem 2 in [43].

Remark 3.3. It follows from part (ii) of Theorem 4.4 that the assumptions of part (4)
of Theorem 3.1 imply that in fact � D �0 and L�0

is positive-critical in � with
respect to W .

Remark 3.4. The norm estimate (12) does not depend on �, Q� and W and p.

Remark 3.5. The requirement thatW is strictly positive can be weakened, and The-
orem 3.1 holds in a slightly weaker sense if W is a nonzero nonnegative function.
Indeed, let 1 � p � 1. Since Stein’s Riesz–Thorin-type interpolation theorem with
weights (see Theorem 2 in [43]) holds for nonnegative weights, we have for � < �

k.G�f /�pkLp.�;d�/ � 1

� � �kf �pkLp.�;d�/

for all f such that f �p 2 Lp.�; d�/.

4 Principal eigenfunction

The Krein–Rutman theorem roughly asserts that if T is a compact operator de�ned
on a Banach space X with a total cone P such that T is positive improving and its
spectral radius r.T / is strictly positive, then T admits a positive eigenfunction with
an eigenvalue r.T /. Moreover, under an irreducibility assumption, r.T / is simple.
The weighted Green operator G� in the weighted Lebesgue spaces Lp.�p/ is posi-
tive improving but in general, G� is not compact. Nevertheless, under some further
conditions it admits a positive eigenfunction with an eigenvalue .� � �/�1.

Throughout the present section, as in Section 3, W is a �xed positive potential,
� � �0, and �, Q� are �xed positive solutions of the equationsL�u D 0 andL?�u D 0

in �, respectively. We study eigenvalues and eigenfunctions of the weighted Green
operators G�.

Remark 4.1. Eigenfunctions of G� �L1.�1/
might be not smooth enough to solve

weakly the corresponding partial differential equation. Therefore, if p D 1, we
always assume that such eigenfunctions are also in Lqloc.�/ for some q > 1.
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Theorem 4.2. Let W , �, �, and Q� be as above, and let � < �. Then for any 1 �
p � 1, zero is not an eigenvalue of the operators G��Lp.�p/ and G

ˇ
�

�Lp. Q�p/
.

Moreover, any eigenfunction ' (resp. Q') of G��Lp.�p/ (resp. G
ˇ
�

�Lp. Q�p/
) with an

eigenvalue � solves the equation

.L� Œ�C .�/�1�W /' D 0 (resp. .L? � Œ�C .�/�1�W / Q' D 0) in �:

Proof. Let 1 � p � 1 and let ' 2 Lp.�p/, k'kp;�p D 1 be an eigenfunction of the
operator G��Lp.�p/ with an eigenvalue �, and de�ne

'k.x/ WD
ˆ

�k

G
�k

L�
.x; y/W.y/'.y/d�.y/ x 2 �k; k � 1:

Clearly,
G
�k

L�
.x; y/W.y/j'.y/j � G�L�

.x; y/W.y/j'.y/j in �k :

On the other hand, by Theorem 3.1 we have G�L�
.x; �/W' 2 L1.�; d�/ for al-

most every x 2 �. Therefore, 'k.x/ is well-de�ned almost everywhere in �k , and
Lebesgue’s dominated convergence theorem implies that

lim
k!1

'k.x/ D
ˆ

�

G�L�
.x; y/W.y/'.y/d�.y/ D �'.x/

almost everywhere in �.
Since j'j 2 Lp.�p/, Theorem 3.1 implies that G�j'j 2 Lp.�p/. Obviously,

j'k j � G�j'j 2 Lp.�p/. Consequently, ¹'kº is bounded in Lp.�p/. Note that for
1 � p < 1, Lebesgue’s dominated convergence theorem implies that

k'kkLp.�p/ �! j�jk'kLp.�p/;

and this holds true also for p D 1.
On the other hand, taking into account Remark 4.1 in case p D 1, it follows that

each 'k solves the equation

.L� �W /'k D W' in �k:

A standard elliptic regularity argument implies that �' solves the equation

.L� �W /�' D W' ¤ 0 in �:

In particular, � ¤ 0. Thus, ' solves the equation

.L� Œ�C .�/�1�W /' D 0 in �:
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Remark 4.3. It was proved in [36] that zero is not an eigenvalue of G��C.�1/.

The next result concerns conditions under which the positive solution � is an
eigenfunction of G� in Lp.�p/.

Theorem 4.4. LetW , �, �, and Q� be as above, and let � < �.

(i) The function � (resp. Q�) is a nonnegative eigenfunction of the operator
G� �L1.�1/ (resp. G

ˇ
�

�L1. Q�1/) with an eigenvalue .� � �/�1 if and only
if � (resp. Q�) is a �-invariant positive solution with respect to L (resp. L?).
In this case

kG�kL1.�1/ D kGˇ
�

kL1. Q�1/
D .� � �/�1;

resp.

kGˇ
�

kL1. Q�1/ D kG�kL1.�1/
D .� � �/�1:

Furthermore, if � and Q� are both �-invariant positive solutions, then for 1 �
p � 1

kG�kLp.�p/ D kGˇ
�

kLp. Q�p/
D .� � �/�1: (13)

(ii) Let 1 � p < 1. Then � (resp. Q�) is a nonnegative eigenfunction of the operator
G��Lp.�p/ (resp. G

ˇ
�

�Lp. Q�p/
) with an eigenvalue � D .� � �/�1 if and only

if � D �0, and the operator L�0
is positive-critical with respect to W . In this

case, � and Q� are the ground states of L�0
and L?

�0
, respectively, and

kG�kLp.�p/ D kGˇ
�

kLp. Q�p/
D 1

�0 � � for all 1 � p � 1:

Proof. (i) All the claims of this part can be checked easily and left to the reader. In
particular, use Theorem 3.1 and Stein’s Riesz–Thorin-type interpolation theorem to
prove (13).

(ii) Let 1 � p < 1. The positive solution � is an eigenfunction of the operator
G��Lp.�p/ with an eigenvalue .� � �/�1 if and only if �W Q� 2 L1.�/ and � is
�-invariant positive solution.

In particular, if � D �0, and L�0
is positive-critical with respect to W , then � is

an eigenfunction of the operator G��Lp.�p/ with an eigenvalue .�0 � �/�1.
On the other hand, if � is an eigenfunction of the operator G��Lp.�p/ with an

eigenvalue .� � �/�1, then �W Q� 2 L1.�/.
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Assume that L� is subcritical in �, then
ˆ

�

G�L�
.x; y/W.y/�.y/d�.y/ < 1:

By Remark 2.3, � is not a�-invariant solution, and we get a contradiction. Therefore,
L� is critical in � and hence, � D �0. Since �W Q� 2 L1.�/, it follows that L�0

is
positive-critical with respect to W .

In the critical case we have the following result.

Theorem 4.5. Let L be an elliptic operator on � of the form (1), and let W be a
positive potential. Assume that the operator L�0

is critical, and let � and Q� be the
ground states of L�0

and L?
�0
, respectively. Fix � < �0.

(i) For 1 � p � 1, we have

kG�kLp.�p/ D kGˇ
�

kLp. Q�p/
D 1

�0 � � :

(ii) The operator G� �L1.�1/ (resp. G
ˇ
�

�L1. Q�1/) admits a unique eigenvalue
� D .�0 � �/�1 with a nonnegative eigenfunction. Moreover, .�0 � �/�1
is a simple eigenvalue of G��L1.�1/ (resp. G

ˇ
�

�L1. Q�1/). The correspond-

ing eigenfunction is � (resp. Q�), and � (resp. Q�) is the unique L1.�1/ (resp.
L1. Q�1/) solution of the equation L�0

u D 0 in �.

(iii) Suppose further that the operator L�0
is positive-critical with respect to W .

Then for all 1 � p < 1 the function � (resp. Q�) is the unique (up to a multi-
plicative constant) nonnegative eigenfunction of the operator G��Lp.�p/ (resp.
Gˇ
�

�Lp. Q�p/
).

Proof. (i)–(ii) Since � is a ground state, it is a �0-invariant positive solution with
respect to the operator L and the weightW , part (i) and the existence assertion of (ii)
follow from part (i) of Theorem 4.4.

It remains to prove the uniqueness and simplicity of .�0 � �/�1 for the operator
G� �L1.�1/. Let ' be a nonnegative eigenfunction of the operator G� �L1.�1/

with an eigenvalue � D .� � �/�1. Without loss of generality we may assume that
k'k1;�1 D 1, thus � � ' � 0. By Theorem 4.2, ' is a positive solution of the
equation .L � �W /u D 0 in �. Hence, � � �0. Therefore, v WD � � ' is a
nonnegative supersolution of the equation .L � �0W /u D in �. On the other hand,
L�0

is critical in � if and only if � is the unique (up to a multiplicative constant)
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nonzero nonnegative supersolution. Thus, � D �0 and ' D �. Hence, for all � < �0,
� is the unique nonnegative eigenfunction of G��L1.�1/.

Moreover, if .�0��/�1 is an eigenvalue of G��L1.�1/ with a normalized eigen-
function ', then u WD � � ' � 0, and by Theorem 4.2 u is a nonnegative solution of
the equation L�0

u D 0 in �. Since L�0
is critical, it follows that u D c� for some

c � 0. So, ' D .1 � c/�, and either c D 0 or c D 2. Hence, .�0 � �/�1 is a simple
eigenvalue of G��L1.�1/.

(iii) For 1 � p < 1, part (ii) of Theorem 4.4 implies that � is a positive eigen-
function of G��Lp.�p/ with an eigenvalue .�0 � �/�1.

Let ' 2 Lp.�p/ be a nonnegative normalized eigenfunction of the operator
G��Lp.�p/ with an eigenvalue �. Note that ' is strictly positive since G��Lp.�p/

is positivity improving. Clearly, � � 0, and by Theorem 4.2 � ¤ 0. Therefore, � can
be written as � D .� � �/�1, where � < �.

On the other hand, one has � � kG�kLp.�p/ D .�0 � �/�1, and hence �0 � �.
By Theorem 4.2, ' is a nonnegative solution of the equationL�u D 0 in�, therefore
� � �0, Thus, � D �0, and ' D �.

The next result deals with the case p D 2. In this case, any L2-eigenfunction of
G��L2.�2/

with the ‘maximal’ eigenvalue has a de�nite sign and this eigenvalue is
simple.

Theorem 4.6. Let L be an elliptic operator on � of the form (1), and let W be a
positive potential. Fix � < � � �0, and let � and Q� be two positive solutions of the
equation L�u D 0 and L?�u D 0 in �, respectively.

If ' is an eigenfunction of G��L2.�2/
with an eigenvalue .�� �/�1, then ' has a

de�nite sign, and .� � �/�1 is a simple eigenvalue of G��L2.�2/
.

Assume further that �W Q� 2 L1.�/. Then 'D c� for some constant c, �D�0,
and the operator L�0

is positive-critical. Moreover, .�0 � �/�1 is the unique eigen-
value of G��Lp.�p/ with a nonnegative eigenfunction for all 1 � p � 1 and all
� < �0. Furthermore, .�0 � �/�1 is a simple eigenvalue of G� �Lp.�p/ for all
2 � p � 1, and all � < �0.

Proof. Recall that

kG�kL2.�2/
� 1

� � �:

Let ' 2 L2.�2/ be an eigenfunction of the operator G� �L2.�2/
with an eigen-

value .� � �/�1. Thus, kG�kL2.�2/
D .� � �/�1. Without loss of generality, we

may assume that ' is a real function. Therefore, due to the positivity improving of
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G��L2.�2/
, and the Cauchy–Schwarz inequality, we obtain

1

� � �k'k2
L2.�2/

D .';G��L2.�2/
'/L2.�2/

� .j'j; jG��L2.�2/
'j/L2.�2/

� .j'j;G��L2.�2/
j'j/L2.�2/

� k'kL2.�2/
kG��L2.�2/

j'jkL2.�2/

� 1

� � �
k'k2

L2.�2/
:

(14)

As a result we have equality signs in all the inequalities of (14). The equality in the
Cauchy–Schwarz inequality implies that

G��L2.�2/
j'j D 1

� � � j'j;

and therefore, j'j is a nonnegative eigenfunction of the operator G��L2.�2/
. Since

G��L2.�2/
is positivity improving, we have j'j > 0. It follows that any such eigen-

function has a de�nite sign. Consequently, a standard orthogonality argument shows
that .� � �/�1 is simple (cf. Theorem XIII.43 in [38]).

Assume further that �W Q� 2 L1.�/, and denote O�p WD j'j�1.j'jW Q�/1=p. Then
by the Cauchy–Schwarz inequality 'W Q� 2 L1.�/, and hence j'j is a positive eigen-
function of the operator G��

L2. O�2/
. Therefore, by Theorem 4.4 (ii), � D �0, the

operator L�0
is positive-critical, and for some constant c we have ' D c�. In ad-

dition, part (iii) of Theorem 4.5 implies that .�0 � �/�1 is the unique eigenvalue of
G��Lp.�p/ with a nonnegative eigenfunction � for all 1 � p < 1 and all � < �0.

The simplicity of .�0 � �/�1 as an eigenvalue of G��Lp.�p/ for 2 � p � 1
follows now from the simplicity for p D 2 and the embedding (11).

Next we study the case p D 1, and obtain the simplicity of the eigenvalue
.�0 � �/�1 for all p under the assumption that .� � �/�1 is an eigenvalue of
G��L1.W Q�/. Note that for p D 1 the result does not depend on a particular posi-

tive solution � of the equation L�u D 0 in� since L1.�1/ D L1.W Q�/. As a result,
we obtain L1- and Lp-Liouville theorems for solutions of the equation L�u D 0

which are eigenfunctions of the operator G� with an eigenvalue .� � �/�1.

Theorem 4.7. Let L be an elliptic operator on � of the form (1), and let W be a
positive potential. Fix � � �0. Let Q� be a positive solution of the equation L?�u D 0

in �, For � < � consider the operator G��L1.W Q�/. Suppose further that .� � �/�1
is an eigenvalue of G��L1.W Q�/ with an eigenfunction '.
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(i) The eigenfunction ' has a de�nite sign, � D �0, and L�0
is positive-critical

with respect to W with a ground state '. In particular, .�0 � �/�1 is a simple
eigenvalue of the operator G��L1.W Q�/.

(ii) Set 'p WD j'j�1.j'jW Q�/1=p (1 � p � 1:) Then for all � < �0 and all
1 � p � 1, ' is an eigenfunction of G��Lp.'p/ with an eigenvalue .�0��/�1.
Moreover, .�0 � �/�1 is a simple eigenvalue, and it is the unique eigenvalue
with a nonnegative eigenfunction.

Proof. (i) Fix any positive solution � of the equation L�u D 0 in �, and let �p WD
��1.�W Q�/1=p: Clearly, L1.�1/ D L1.W Q�/. By Theorem 3.1, for any � < � the
operator G��L1.W Q�/ is bounded with a norm kG��L1.W Q�/ kL1.W Q�/ � .� � �/�1.

Let ' be an eigenfunction of G��L1.W Q�/ with an eigenvalue .� � �/�1. By our
assumption,

j'.x/j
� � � D

ˇ̌
ˇ̌
ˆ

�

G�L�
.x; y/W.y/'.y/d�.y/

ˇ̌
ˇ̌ for all x 2 �:

Therefore, using (4) we obtain

1

� � �
ˆ

�

j'.x/jW.x/ Q�.x/d�

D
ˆ

�

ˇ̌
ˇ̌
ˆ

�

G�L�
.x; y/W.y/'.y/d�.y/

ˇ̌
ˇ̌W.x/ Q�.x/d�.x/

�
ˆ

�

�
ˆ

�

G�L�
.x; y/W.y/j'.y/jd�.y/

�
W.x/ Q�.x/d�.x/

D
ˆ

�

�
ˆ

�

G�L�
.x; y/W.x/ Q�.x/d�.x/

�
W.y/j'.y/jd�.y/

� 1

� � �
ˆ

�

Q�.y/W.y/j'.y/jd�.y/:

(15)

Thus, the two inequalities in (15) are equalities, and in particular, for almost all x 2 �
we have

ˇ̌
ˇ̌
ˆ

�

G�L�
.x; y/W.y/'.y/d�.y/

ˇ̌
ˇ̌ D
ˆ

�

G�L�
.x; y/W.y/j'.y/jd�.y/;

and hence ' does not change its sign in�. Moreover, the equality in (15) implies also
that Q� is an invariant solution of the equationL?�u D 0 in�. Since j'jW Q� 2 L1.�/,
Remark 2.3 implies that � D �0, L�0

is positive-critical, and j'j is its ground state.
Hence, the simplicity of the ‘maximal’ eigenvalue follows. Consequently, part (ii)
follows using the embedding (11), part (i) of the present theorem, and part (iii) of
Theorem 4.5.
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Corollary 4.8. Let L be an elliptic operator on � of the form (1), and let W be a
positive potential. Assume further that L?1 D 0. For � < 0 consider the operator
G��L1.W /.

Suppose that j�j�1 is an eigenvalue of G��L1.W / with an eigenfunction ', and

set 'p WD j'j�1.j'jW /
1=p, where 1 � p � 1. Then ' has a de�nite sign, �0 D 0,

L is positive-critical, and for all � < 0 and all 1 � p � 1, j�j�1 is the unique
eigenvalue of G� �Lp.'p/ with a nonnegative eigenfunction. Moreover, j�j�1 is a
simple eigenvalue of G��Lp.'p/

Example 4.9. Let � D Rd , and consider a uniformly elliptic operator L with
bounded smooth coef�cients on Rd such that L?1 D 0 in Rd (these conditions
can be relaxed). For example, assume that L is of the form

Lu WD �div.A.x/ruC u Qb.x// x 2 R
d :

Suppose that the equation Lu D 0 inRd admits a solution ' satisfying ' 2 L1.Rd /.
Let kR

d

L .x; y; t / the heat kernel associated with the operator L on Rd . Then

v.x; t/ WD
ˆ

Rd

kR
d

L .x; y; t /'.y/dy

is a well de�ned L1-solution of the Cauchy problem with the initial condition '.
Since the uniqueness of the Cauchy problem for L1-initial conditions holds true
(see [3] and [4]), it follows that v D '. Fix � < 0. It follows that

'.x/

j�j D
ˆ 1

0

e�tv.x; t/dt

D
ˆ 1

0

e�t
�
ˆ

Rd

kR
d

L .x; y; t /'.y/dy

�
dt

D
ˆ

Rd

�
ˆ 1

0

e�tkR
d

L .x; y; t /dt

�
'.y/dy

D
ˆ

Rd

GRd

L�
.x; y/'.y/dy:

So, ' is an eigenfunction of G��L1.Rd / with an eigenvalue j�j�1. Corollary 4.8 im-
plies that L is positive-critical with respect toW D 1, and j'j > 0 is the correspond-
ing ground state. In particular, 1 is an invariant positive solution of the operator L?.
Moreover, j�j�1 is a simple eigenvalue of G��L1.Rd /.

Let 1 � p � 1, and 'p WD j'j1=p�1. Then, by Corollary 4.8 for all � < 0

and all 1 � p � 1, j�j�1 is the unique eigenvalue of G��Lp.'p/ with a nonnega-
tive eigenfunction j'j. Moreover, j�j�1 is a simple eigenvalue of G��Lp.'p/ for all
1 � p � 1.
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Remark 4.10. ForLp-Liouville theorems for symmetric diffusion operators on com-
plete Riemannian manifolds, see [25], [44], and references therein.

5 Semigroups and generators

De�nition 5.1. Let B be a Banach space and ƒ � C, and consider a one-parameter
family of operators J.�/ 2 L.B/ de�ned for each � 2 ƒ. The family ¹J.�/ j � 2 ƒº
is called a pseudoresolvent if

J.�/� J.�/ D .� � �/J.�/J.�/
holds for all �; � 2 ƒ (see De�nition 4.3 in [17]).

Let L be an elliptic operator on � of the form (1), and W a positive potential.
Fix � � �0 D �0.L;W;�/, and let

ƒ WD
´

¹� 2 R j � � �º if L� is subcritical,

¹� 2 R j � < �º if � D �0 and L�0
is critical.

(16)

Recall that by (2.10) of [34], for all �; � 2 ƒ the corresponding Green functions
satisfy the (pointwise) resolvent equation

G�L�
.x; y/ D G�L�

.x; y/C .� � �/
ˆ

�

G�L�
.x; z/W.z/G�L�

.z; y/d�.z/ (17)

for all x; y 2 �, x ¤ y.
Let � and Q� be two �xed positive solutions of the equationsL�uD0 andL?�uD0

in �, respectively. It follows from Theorem 3.1 and (17) that for any 1 � p � 1,
the family

¹G.��/�Lp.�p/j �� 2 ƒº D ¹GLC�W�Lp.�p/j �� 2 ƒº
is a pseudoresolvent on Lp.�p/.

We claim that for 1 � p < 1 and � 2 ƒ, the range of G��Lp.�p/ is dense in
Lp.�p/. Indeed, take u 2 C1

0 .�/, and let Nu 2 N be such that suppu b �Nu .
Set f .x/ WD .W.x//�1L�u.x/. For n � Nu denote un WD G

�n

�
�Lp.�p/ f . Clearly,

supp f � �n for all n � Nu. Therefore, by uniqueness, for any such n we have
un D u in �n, and consequently, u D G�

�
�Lp.�p/ f , and u belongs to the range of

G��Lp.�p/. Since for 1 � p < 1 the space C1
0 .�/ is dense in L

p.�p/, it follows
that the range of G��Lp.�p/ is dense in L

p.�p/.
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On the other hand, by Theorem 4.2, zero is not an eigenvalue of the operators
G��Lp.�p/ for � < � and all 1 < p � 1. Moreover, for 1 � p � 1 we have

kG�kLp.�p/ � 1

� � �; (18)

and in particular,

lim sup
�!�1

k�G�kLp.�p/ � lim
�!�1

��
� � � D 1:

Moreover, (18) implies also that if � � 0 and � < 0, then

k�G�kLp.�p/ � 1:

Therefore, by Proposition III.4.6 and Corollary III.4.7 of [17], and the Hille–Yosida
theorem (Theorem II.3.5 in [17]), we have

Theorem 5.2. Let L be an elliptic operator on � of the form (1), and let W be a
positive potential. Fix 1 < p < 1, � � �0, and let ƒ be as in (16). Let � and
Q� be two �xed positive solutions of the equations L�u D 0 and L?�u D 0 in �,
respectively.

(i) The pseudoresolvent family

¹G.��/�Lp.�p/j �� 2 ƒº

is a resolvent of a densely de�ned closed operator

Ap WD �.G�1
�Lp.�p//

�1 � �1 where �1 2 ƒ

on Lp.�p/ with a domain D.Ap/ D R.G�1
�Lp.�p//. In particular, Ap D

�.1=W /L on C1
0 .�/. Moreover, .��;1/ � �.Ap/, and for � 2 .��;1/ we

have
R.�; Ap/ WD .� � Ap/�1 D G.��/�Lp.�p/ :

(ii) Zero is not an eigenvalue of G��Lp.�p/.

(iii) If � � 0, then .Ap; D.Ap// generates a strongly continuous contraction semi-
group. Moreover, for every � 2 C with Re� > 0 one has � 2 �.Ap/, and

kR.�; Ap/kLp.�p/ � 1

Re�
:
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6 Compactness and semismall perturbations

Throughout this section, we assume that L is subcritical in� andW > 0 is a semis-
mall perturbation of L and L? in �. By Remark 2.7, �0 > 0, and L�0

is positive-
critical. Denote by � and Q� the ground states of L�0

and L?
�0
, respectively. We may

assume that �.x0/ D 1. So,

.L � �0W /� D .L? � �0W / Q� D 0 in �

and
Q�W� 2 L1.�/:

Without loss of generality, we may assume that
ˆ

�

Q�.x/W.x/�.x/d�.x/ D 1:

It follows that Q� 2 .L1. Q�1// � .L1.�1//?, and for every f 2 L1.�1/ we have
h Q�; f i D ´

�
Q�.x/W.x/f .x/d�.

The aim of the present section is to prove that under the above assumptions, the
integral operator G� is compact on Lp.�p/ for any 1 � p � 1 and � < �0, and its
spectrum is p-independent. We �rst prove the compactness of G�.

Theorem 6.1. Let L be a subcritical operator in �. Assume that W > 0 is a semis-
mall perturbation of L? and L in �. Then for any 1 � p � 1 and � < �0,
the integral operators

G�f .x/ D
ˆ

�

G�
L��W .x; y/W.y/f .y/d�.y/;

G
ˇ
�
f .y/ D

ˆ

�

G�
L��W .x; y/W.x/f .x/d�.x/

are compact on Lp.�p/ and Lp. Q�p/, respectively.

Proof. By Theorem 5.1 in [36], the operators G��L1.�1/ and G
ˇ
�

�L1. Q�1/ are com-

pact onL1.�1/ andL1. Q�1/, respectively. For the sake of completeness, we prove
the compactness of G� �L1.�1/; the proof of the compactness of Gˇ

�
�L1. Q�1/ is

identical.
Let ¹fnº be a bounded sequence in L1.�1/. By Theorem 3.1, the sequence

un WD G��L1.�1/ fn is bounded in L1.�1/, and satis�es

jun.x/j �
ˆ

�

G�L�
.x; y/W.y/jfn.y/jd�.y/ � C�0.x/;



Boundedness and compactness of Green operators 483

where C WD .�0 � �/�1 supn kfnk1;�1 is independent of n. Moreover, it follows
that un is the unique function in L1.�1/ which is a (weak) solution of the equation
L�u D fn in� (cf. Theorem 4.6 in [36]). Consequently, a standard elliptic argument
implies that the sequence ¹unº admits a subsequence which converges in the compact
open topology to a function u. Clearly, kuk1;�1 � C , so, u 2 L1.�1/

Since W is a semismall perturbation, it follows that for any given " > 0 there
exists K such that for any k � K and n;m 2 N

ˆ

��
k

G�L�
.x; y/W.y/jfn.y/ � fm.y/jd�.y/

� 2C

ˆ

��
k

G�L�
.x; y/W.y/�0.y/d�.y/ < "�0.x/ for all x 2 ��

k
;

(19)

and by the generalized maximum principle in �k , (19) holds for any x 2 �.
The local uniform convergence of ¹unº implies that there existsN" 2 N such that

jun � umj � "�0 in �K for all n;m � N".
Fix n;m � N". It follows from Lemma 4.3 in [36] and the linearity that on ��

K

we have

un.x/ � um.x/ D hn;m.x/C
ˆ

��
K

G
��

K

L�
.x; y/W.y/.fn.y/ � fm.y//d�.y/;

where hn;m 2 L1.�1/ satis�es

L�hn;m D 0 in ��
K ;

and
hn;m.x/ D un.x/ � um.x/ x 2 @�K :

Since jhn;mj � "�0 on @�K , and hn;m has minimal growth in �, it follows that
jhn;mj � 2"�0 in ��

K . On the other hand, by (19) we haveˇ̌
ˇ̌
ˆ

��
K

G
��

K

L�
.x; y/W.y/.fn.y/ � fm.y//d�.y/

ˇ̌
ˇ̌

�
ˆ

��
K

G�L�
.x; y/W.y/jfn.y/ � fm.y/jd�.y/ < "�0.x/ for all x 2 ��

K :

Consequently, we infer that jun � umj � 3 "�0 in ��
K for all n;m � N". Thus,

un ! u in L1.�1/.

Since for each 1 � p � 1 the operator G��Lp.�p/ is bounded on Lp.�p/, and
G��L1.�1/ is compact on L1.�1/, it follows from a variant of the Riesz–Thorin
interpolation theorem with respect to compact operators (see Theorem 1.1 in [12])
that G��Lp.�p/ are compact for all 1 � p � 1. The same is true for Gˇ

�
�Lp. Q�p/

.
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Remark 6.2. For � < �0 the operators G��L1.�1/ and G
ˇ
�

�L1. Q�1/ are the dual

operators of Gˇ
�

�L1. Q�1/
and G� �L1.�1/

, respectively. Therefore, the well-known

Schauder theorem directly implies that Gˇ
�

�L1. Q�1/
and G��L1.�1/

are compact on

L1. Q�1/ and L1.�1/, respectively.

Remark 6.3. In the proof of Theorem 6.1 we used the fact that real interpolation
preserves the compactness of an operator. We recall that in his remarkable paper [11]
A. Calderón implicitly asked a question which is apparently still open today: does
complex interpolation preserve the compactness of an operator? For a recent survey
on this question see [13].

The next theorem discusses the spectral properties of G��Lp.�p/.

Theorem 6.4. Under the assumptions of Theorem 6.1 we have

(1) for 1 � p � 1, the spectrum of G��Lp.�p/ contains 0, and besides, consists
of at most a sequence of eigenvalues of �nite multiplicity which has no point of
accumulation except 0;

(2) for any 1 � p � 1, � (resp. Q�) is the unique nonnegative eigenfunction of
the operator G��Lp.�p/ (resp. G

ˇ
�

�Lp. Q�p/
); the corresponding eigenvalue � D

.�0 � �/�1 is simple;
(3) the spectrum of G��Lp .�p/ is p-independent for all 1 � p � 1, and we have

0 2 �.G��Lp.�p// D �.Gˇ
�

�Lp. Q�p/
/ � B.0; .�0 � �/�1/:

Proof. (1) The characterization of the spectrum of G� �Lp.�p/ for each p follows
from the Riesz–Schauder theory for compact operators.

(2) Follows from Theorem 4.7.

(3) The compactness of all the operators G��Lp.�p/ implies that it is enough to
show that �point.G��Lp.�p// is p-independent.

By (11) we have for any 1 � p � 1 that

�point.G��L1.�1// � �point.G��Lp.�p// � �point.G��L1.�1/
/; (20)

and
�point.G

ˇ
�

�L1. Q�1// � �point.G
ˇ
�

�Lp. Q�p/
/ � �point.G

ˇ
�

�L1. Q�1/
/: (21)

On the other hand, � and Q� are �0-invariant positive solutions of the operator L and
L?, respectively. Therefore, Theorem 4.4 implies that kG�kLp.�p/ D .� � �/�1.
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Recall that by Theorem 3.1, for any 1 � p < 1, the operator Gˇ
�

�Lp0
. Q�p0 / is

the dual operator of G��Lp.�p/, and G��Lp0
.�p0 / is the dual of G

ˇ
�

�Lp. Q�p/
. Since the

spectra of a bounded operator and its dual are equal, we have

�.G��L1.�1/
/ D �.Gˇ

�
�L1. Q�1//; �.Gˇ

�
�L1. Q�1/

/ D �.G��L1.�1//:

Thus all the point-spectra in (20) and (21) are equal.

Acknowledgments. The author is grateful to Professor M. Cwikel and the late pro-
fessor V. Liskevich for valuable discussions. The author thanks the anonymous ref-
eree for his careful reading and valuable comments.

This research was supported by the Israel Science Foundation (grants No. 963/11)
founded by the Israel Academy of Sciences and Humanities.

References

[1] S. Agmon, Bounds on exponential decay of eigenfunctions of Schrödinger op-
erators. In S. Graf� (ed.), Schrödinger operators. Lectures given at the 2nd 1984
session of the Centro Internationale Matematico Estivo (CIME) held in Como,
August 26–September 4, 1984. Lecture Notes in Mathematics, 1159. Springer-
Verlag, Berlin, 1985, 1–38. MR 0824986 Zbl 0583.35027

[2] H. Aikawa, Norm estimate of Green operator, perturbation of Green function
and integrability of superharmonic functions. Math. Ann. 312 (1998), no. 2,
289–318. MR 1671780 Zbl 0917.31001

[3] D. G. Aronson and P. Besala, Uniqueness of solutions of the Cauchy problem
for parabolic equations. J. Math. Anal. Appl. 13 (1966), 516–526. MR 0192197
Zbl 0137.29501

[4] D. G. Aronson and P. Besala, Corrections to “Uniqueness of solutions of the
Cauchy problem for parabolic equations.” J. Math. Anal. Appl. 17 (1967),
194–196. Zbl 0137.29501

[5] W. Arendt, Gaussian estimates and interpolation of the spectrum in Lp . Dif-
ferential Integral Equations 7 (1994), no. 5-6, 1153–1168. MR 1269649
Zbl 0827.35081

[6] R. Bauñelos and B. Davis, Heat kernel, eigenfunctions, and conditioned Brow-
nian motion in planar domains. J. Funct. Anal. 84 (1989), no. 1, 188–200.
MR 0999496 Zbl 0676.60073

http://www.ams.org/mathscinet-getitem?mr=0824986
http://zbmath.org/?q=an:0583.35027
http://www.ams.org/mathscinet-getitem?mr=1671780
http://zbmath.org/?q=an:0917.31001
http://www.ams.org/mathscinet-getitem?mr=0192197
http://zbmath.org/?q=an:0137.29501
http://zbmath.org/?q=an:0137.29501
http://www.ams.org/mathscinet-getitem?mr=1269649
http://zbmath.org/?q=an:0827.35081
http://www.ams.org/mathscinet-getitem?mr=0999496
http://zbmath.org/?q=an:0676.60073


486 Y. Pinchover

[7] A. Ben Amor and W. Hansen, Continuity of eigenvalues for Schrödinger op-
erators, Lp-properties of Kato type integral operators. Math. Ann. 321 (2001),
no. 4, 925–953. MR 1872535 Zbl 1067.35053

[8] H. Berestycki, L. Nirenberg and S. R. S. Varadhan, The principal eigenvalue
and maximum principle for second-order elliptic operators in general domains.
Comm. Pure Appl. Math. 47 (1994), no. 1, 47–92. MR 1258192
Zbl 0806.35129

[9] H. Berestycki and L. Rossi, Generalizations and properties of the principal
eigenvalue of elliptic operators in unbounded domains. Comm. Pure Appl.
Math. 68 (2015), no. 6, 1014–1065. MR 3340379 Zbl 1332.35243

[10] I. Birindelli, Hopf’s lemma and anti-maximum principle in general domains.
J. Differential Equations 119 (1995), no. 2, 450–472. MR 1340547
Zbl 0831.35114

[11] A. P. Calderón, Intermediate spaces and interpolation, the complex method.
Studia Math. 24 (1964), 113–190. MR 0167830 Zbl 0204.13703

[12] M. Cwikel, Real and complex interpolation and extrapolation of compact oper-
ators. Duke Math. J. 65 (1992), no. 2, 333–343. MR 1150590 Zbl 0787.46062

[13] M. Cwikel, Nigel Kalton and complex interpolation of compact operators.
Preprint 2014. arXiv:1410.4527 [math.FA]

[14] E. B. Davies, Lp spectral independence and L1 analyticity. J. London Math.
Soc. (2) 52 (1995), no. 1, 177–184. MR 1345724 Zbl 0913.47032

[15] E. B. Davies,Lp spectral independence for certain uniformly elliptic operators.
In L. Hörmander and A. Melin (eds.), Partial differential equations and math-
ematical physics. Papers from the Danish–Swedish Analysis Seminar held at
the University of Copenhagen, Copenhagen, March 17–19, 1995, and the Uni-
versity of Lund, Lund, May 19–21, 1995. Progress in Nonlinear Differential
Equations and their Applications, 21. Birkhäuser Boston, Inc., Boston, MA,
1996, 122–125. MR 1380986 Zbl 0864.35077

[16] E. B. Davies and B. Simon, Ultracontractivity and the heat kernel for
Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal. 59 (1984),
no. 2, 335–395. MR 0766493 Zbl 0568.47034

[17] K-J. Engel and R. Nagel, One-parameter semigroups for linear evolu-
tion equations. With contributions by S. Brendle, M. Campiti, T. Hahn,
G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli, and
R. Schnaubelt. Graduate Texts inMathematics, 194. Springer, Berlin etc., 2000.
ISBN 0-387-98463-1 MR 1721989 Zbl 0952.47036

http://www.ams.org/mathscinet-getitem?mr=1872535
http://zbmath.org/?q=an:1067.35053
http://www.ams.org/mathscinet-getitem?mr=1258192
http://zbmath.org/?q=an:0806.35129
http://www.ams.org/mathscinet-getitem?mr=3340379
http://zbmath.org/?q=an:1332.35243
http://www.ams.org/mathscinet-getitem?mr=1340547
http://zbmath.org/?q=an:0831.35114
http://www.ams.org/mathscinet-getitem?mr=0167830
http://zbmath.org/?q=an:0204.13703
http://www.ams.org/mathscinet-getitem?mr=1150590
http://zbmath.org/?q=an:0787.46062
http://arxiv.org/abs/1410.4527
http://www.ams.org/mathscinet-getitem?mr=1345724
http://zbmath.org/?q=an:0913.47032
http://www.ams.org/mathscinet-getitem?mr=1380986
http://zbmath.org/?q=an:0864.35077
http://www.ams.org/mathscinet-getitem?mr=0766493
http://zbmath.org/?q=an:0568.47034
http://www.ams.org/mathscinet-getitem?mr=1721989
http://zbmath.org/?q=an:0952.47036


Boundedness and compactness of Green operators 487

[18] A. Grigor0yan and J. Hu, Heat kernels and Green functions on metric measure
spaces. Canad. J. Math. 66 (2014), no. 3, 641–699. MR 3194164
Zbl 1293.35128

[19] M. Grüter and K.-O. Widman, The Green function for uniformly elliptic equa-
tions. Manuscripta Math. 37 (1982), no. 3, 303–342. MR 0657523
Zbl 0485.35031

[20] W. Hansen, Global comparison of perturbed Green functions. Math. Ann. 334
(2006), no. 3, 643–678. MR 2207878 Zbl 1123.31001

[21] A. T. Hill, Estimates on the Green’s function of second-order elliptic opera-
tors in RN . Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 5, 1033–1051.
MR 1642132

[22] R. Killip, M. Visan, and X. Zhang, Riesz transforms outside a convex obstacle.
Int. Math. Res. Not. IMRN 2016 (2016), no. 19, 5875–5921. MR 3567262

[23] P. C. Kunstmann and H. Vogt, Weighted norm estimates and Lp-spectral in-
dependence of linear operators. Colloq. Math. 109 (2007), no. 1, 129–146.
MR 2308831 Zbl 1126.35034

[24] D. Lenz, P. Stollmann, and D. Wingert, Compactness of Schrödinger semi-
groups.Math. Nachr. 283 (2010), no. 1, 94–103. MR 2598595 Zbl 1243.47070

[25] X. D. Li, Liouville theorems for symmetric diffusion operators on complete
Riemannian manifolds. J. Math. Pures Appl. (9) 84 (2005), no. 10, 1295–1361.
MR 2170766 Zbl 1082.58036

[26] V. Liskevich and H. Vogt, On Lp-spectra and essential spectra of second-order
elliptic operators. Proc. London Math. Soc. (3) 80 (2000), no. 3, 590–610.
MR 1744777 Zbl 1053.35114

[27] V. Liskevich, Z. Sobol and H. Vogt, On the Lp-theory of C0-semigroups asso-
ciated with second-order elliptic operators. II. J. Funct. Anal. 193 (2002), no. 1,
55–76. MR 1923628 Zbl 1020.47029

[28] G. Metafune, D. Pallara and M. Wacker, Compactness properties of Feller
semigroups. Studia Math. 153 (2002), no. 2, 179–206. MR 1948923
Zbl 1033.47030

[29] M. Murata, Structure of positive solutions to .�� C V /u D 0 in Rn. Duke
Math. J. 53 (1986), no. 4, 869–943. MR 0874676 Zbl 0624.35023

[30] M. Murata, Semismall perturbations in the Martin theory for elliptic equations.
Israel J. Math. 102 (1997), 29–60. MR 1489100 Zbl 0891.35013

http://www.ams.org/mathscinet-getitem?mr=3194164
http://zbmath.org/?q=an:1293.35128
http://www.ams.org/mathscinet-getitem?mr=0657523
http://zbmath.org/?q=an:0485.35031
http://www.ams.org/mathscinet-getitem?mr=2207878
http://zbmath.org/?q=an:1123.31001
http://www.ams.org/mathscinet-getitem?mr=1642132
http://www.ams.org/mathscinet-getitem?mr=3567262
http://www.ams.org/mathscinet-getitem?mr=2308831
http://zbmath.org/?q=an:1126.35034
http://www.ams.org/mathscinet-getitem?mr=2598595
http://zbmath.org/?q=an:1243.47070
http://www.ams.org/mathscinet-getitem?mr=2170766
http://zbmath.org/?q=an:1082.58036
http://www.ams.org/mathscinet-getitem?mr=1744777
http://zbmath.org/?q=an:1053.35114
http://www.ams.org/mathscinet-getitem?mr=1923628
http://zbmath.org/?q=an:1020.47029
http://www.ams.org/mathscinet-getitem?mr=1948923
http://zbmath.org/?q=an:1033.47030
http://www.ams.org/mathscinet-getitem?mr=0874676
http://zbmath.org/?q=an:0624.35023
http://www.ams.org/mathscinet-getitem?mr=1489100
http://zbmath.org/?q=an:0891.35013


488 Y. Pinchover

[31] M. Murata, Integral representations of nonnegative solutions for parabolic
equations and elliptic Martin boundaries. J. Funct. Anal. 245 (2007), no. 1,
177–212. MR 2310806 Zbl 1116.58026

[32] Y. Pinchover, On positive solutions of second-order elliptic equations, sta-
bility results and classi�cation. Duke Math. J. 57 (1988), no. 3, 955–980.
MR 0975130 Zbl 0685.35035

[33] Y. Pinchover, Criticality and ground states for second-order elliptic equations.
J. Differential Equations 80 (1989), no. 2, 237–250. MR 1011149
Zbl 0697.35036

[34] Y. Pinchover, On criticality and ground states of second order elliptic equa-
tions. II. J. Differential Equations 87 (1990), no. 2, 353–364. MR 1072906
Zbl 0714.35055

[35] Y. Pinchover, On nonexistence of any �0-invariant positive harmonic function,
a counterexample to Stroock’s conjecture. Comm. Partial Differential Equa-
tions 20 (1995), no. 9-10, 1831–1846. MR 1349233 Zbl 0839.58053

[36] Y. Pinchover, Maximum and anti-maximum principles and eigenfunctions esti-
mates via perturbation theory of positive solutions of elliptic equations. Math.
Ann. 314 (1999), no. 3, 555–590. MR 1704549 Zbl 0928.35010

[37] Y. Pinchover, Liouville-type theorem for Schrödinger operators. Comm. Math.
Phys. 272 (2007), no. 1, 75–84. MR 2291802 Zbl 1135.35021

[38] M. Reed and B. Simon,Methods of modern mathematical physics. IV. Analysis
of operators. Academic Press [Harcourt Brace Jovanovich, Publishers],
New York and London, 1978. ISBN 0-12-585004-2 MR 0493421
Zbl 0401.47001

[39] Yu. A. Semenov, Stability of Lp-spectrum of generalized Schrödinger opera-
tors and equivalence of Green’s functions. Internat. Math. Res. Notices 1997,
no. 12, 573–593. MR 1456565 Zbl 0905.47031

[40] H. Shindoh, Kernel estimates and Lp-spectral independence of generators of
C0-semigroups. J. Funct. Anal. 255 (2008), no. 5, 1273–1295. MR 2455498
Zbl 1225.47043

[41] B. Simon, Brownianmotion,Lp properties of Schrödinger operators and the lo-
calization of binding. J. Funct. Anal. 35 (1980), no. 2, 215–229. MR 0561987
Zbl 0446.47041

[42] Z. Sobol and H. Vogt, On the Lp-theory of C0-semigroups associated with
second-order elliptic operators. I. J. Funct. Anal. 193 (2002), no. 1, 24–54.
MR 1923627 Zbl 1020.47028

http://www.ams.org/mathscinet-getitem?mr=2310806
http://zbmath.org/?q=an:1116.58026
http://www.ams.org/mathscinet-getitem?mr=0975130
http://zbmath.org/?q=an:0685.35035
http://www.ams.org/mathscinet-getitem?mr=1011149
http://zbmath.org/?q=an:0697.35036
http://www.ams.org/mathscinet-getitem?mr=1072906
http://zbmath.org/?q=an:0714.35055
http://www.ams.org/mathscinet-getitem?mr=1349233
http://zbmath.org/?q=an:0839.58053
http://www.ams.org/mathscinet-getitem?mr=1704549
http://zbmath.org/?q=an:0928.35010
http://www.ams.org/mathscinet-getitem?mr=2291802
http://zbmath.org/?q=an:1135.35021
http://www.ams.org/mathscinet-getitem?mr=0493421
http://zbmath.org/?q=an:0401.47001
http://www.ams.org/mathscinet-getitem?mr=1456565
http://zbmath.org/?q=an:0905.47031
http://www.ams.org/mathscinet-getitem?mr=2455498
http://zbmath.org/?q=an:1225.47043
http://www.ams.org/mathscinet-getitem?mr=0561987
http://zbmath.org/?q=an:0446.47041
http://www.ams.org/mathscinet-getitem?mr=1923627
http://zbmath.org/?q=an:1020.47028


Boundedness and compactness of Green operators 489

[43] E. M. Stein, Interpolation of linear operators. Trans. Amer. Math. Soc. 83
(1956), 482–492. MR 0082586 Zbl 0072.32402

[44] J.-Y. Wu, Lp-Liouville theorems on complete smooth metric measure spaces.
Bull. Sci. Math. 138 (2014), no. 4, 510–539. MR 3215940 Zbl 1295.53030

http://www.ams.org/mathscinet-getitem?mr=0082586
http://zbmath.org/?q=an:0072.32402
http://www.ams.org/mathscinet-getitem?mr=3215940
http://zbmath.org/?q=an:1295.53030




Abstract graph-like spaces

and vector-valued metric graphs

Olaf Post

Dear Pavel, thank you for having supported me over all the time;

I hope you will �nd this new piece of “heavy German machinery”

useful for our future collaboration,

and that we can continue working together for a long time.

Všechno nejlepší k narozeninám, Pavle!

Prologue

I became interested in graph-like spaces by a question of Vadim Kostrykin, asking
whether a Laplacian on a family of open sets .X"/">0, converging to a metric graph
X0 converges to some suitable Laplacian on X0. At that time, I was not aware of
the work of Kuchment and Zeng [10] and wrote down some ideas. Somehow Pavel
must have heard about this; he invited me to visit him in Řež in October 2002, just
two months after the big �ood, which covered even the high-lying tracks with water,
resulting in a very reduced schedule. At that time one had to buy the local ticket at
Praha Masarykovo nádraží at a counter where one was forced to pronounce the most
complicated letter in Czech language, the

”
Ř“ in

”
Řež“. At least I got the ticket I

wanted, and enjoyed staying in this little pension Hudec. Řež at night has something
very special and rare nowadays in our noise-polluted world – Silence! Only the dogs
bark and from time to time, trains pass by on the other side of the Vltava… Also
Řež was a good opportunity to pick up some Czech words, as people in that little
village only spoke Czech (and sometimes a little bit German)

”
Máte smažený sýr?“

–
”
Dobrou chut’!“ –

”
Pivo, prosím“… This invitation was the start of a very fruitful

collaboration with Pavel over many years, resulting in several publications, see [5],
[6], [7], and [8]. Pavel inspired my research on graph-like spaces, resulting even in
an entire book [15]. Pavel sometimes cites it with the words “… and then we apply
the heavy German machinery…”
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1 Introduction

This present note shall serve as a uni�ed approach on how to work with spaces that
can be decomposed into building blocks (the analytic viewpoint) or that can be built
up from building blocks (the synthetic viewpoint) according to a graph. We will
call such spaces (abstract) graph-like spaces. They can be obtained in basically two
different ways, depending on whether the graph-like space is decomposed into pieces
indexed by vertices or edges, respectively. We call them vertex-coupled or edge-
coupled, respectively. There is also a mixed case, when one has a decomposition into
parts indexed by vertices and edges (like for thin "-neighbourhoods of embedded
graphs or graph-like manifolds in the spirit of [15]). This case can be reduced to
the vertex-coupled case by considering the subdivision graph as an underlying graph
(see De�nition 2.1 in Section 2.1 for details).

In the edge-coupled case, one can also choose a suitable subspace at each vertex
determining the vertex conditions, verymuch in the spirit of a quantum graph. Indeed,
one can consider edge-coupled spaces as general or vector-valued quantum graphs
(see [12] and also [1] for a another point of view). Explaining the concept of metric
and quantum graphs in an article dedicated to Pavel would be (in his own words…) to
bring owls to Athens or coal to Newcastle or �rewood to the forest… instead we refer
to the book of Berkolaiko and Kuchment [2] or to Section 2.2 of [15]). We de�ne the
coupling via the language of abstract boundary value problems. Such a theory has
been developed mostly for operators, in order to describe (all) self-adjoint extensions
of a given minimal operator. As we are interested only in “geometric” non-negative
operators such as Laplacians we �nd it more suitable to start with the corresponding
quadratic or energy forms. A theory of abstract boundary value problems expressed
entirely in terms of quadratic forms has been developed recently under the name
boundary pairs in [16], and under the name boundary maps in [15] (see also [16]
and references therein for related concepts, as well as [9], especially Chapter 3 by
Arlinskiı̆). In particular, one has an abstract Dirichlet and Neumann operator, a so-
lution operator for the Dirichlet problem and a Dirichlet–to–Neumann operator, see
Section 2.

The coupling of abstract boundary value problems in Section 3 is – of course –
not new (see, e.g., Chapter 7 in [9] and references therein). For our graph-like spaces,
the new point is the interpretation of the coupled operators such as the Neumann or
Dirichlet–to–Neumann operator as a discrete vector-valued graph Laplacian.

In Section 4 of this note, we explain the concept of a distance of two abstract
graph-like spaces based on their building blocks (such as the vertex or edge part of
a graph-like space). This concept can be used to show convergence of a family of
abstract boundary value problems to a limit one. The motivation is to give a uni�ed
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approach for the convergence of many types of (concrete) graph-like spaces such as
thick graphs, "-neighbourhoods of embedded graphs or graph-like manifolds, includ-
ing different types of boundary conditions (Neumann, Dirichlet).

I’d like to thank the anonymous referee for very carefully reading this manuscript,
valuable suggestions and pointing out quite a lot of typos. I’m afraid there are still
some left…

2 Preliminaries

In this section we �x the notation and collect brie�y some facts on discrete graphs,
as well as on abstract boundary value problems (boundary pairs) and convergence of
operators acting in different Hilbert spaces.

2.1 Discrete Graphs

Let G D .V; E; @/ be a countable graph, i.e., V and E are disjoint and at most
countable sets and @WE ! V �V is a map de�ning the incidence between edges and
vertices, namely, @e D .@�e; @Ce/ is the pair of the initial resp. terminal vertex of a
given edge e 2 E. Let

E.V1; V2/ WD ¹ e 2 E j @�e 2 V1; @Ce 2 V2 or @Ce 2 V1; @�e 2 V2 º

for V1; V2 � V . We denote by Ev D E.¹vº; V / � E the set of edges adjacent with
the vertex v 2 V and call the number deg v WD jEvj the degree of a vertex v 2 V .
We always assume that the graph is locally �nite, i.e., that deg v < 1 for all v 2 V
(but not necessarily uniformly bounded). For ease of notation, we also assume that
the graph has no loops, i.e., edges e with @�e D @Ce.

We use the convention that we have chosen already an orientation of each edge
via @e D .@�e; @Ce/, i.e., for each edge e there is not automatically an edge in E
with the opposite direction. In particular, we assume that

X

v2V

X

e2Ev

ae.v/ D
X

e2E

X

vD@˙e

ae.v/ (1)

holds for any numbers ae.v/ 2 C, and this also implies that
P
v2V deg v D 2jEj by

setting ae.v/ D 1. We make constant use of this reordering in the sequel.
Given a graph G D .V; E; @/, we construct another graph by introducing a new

vertex on each edge:
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De�nition 2.1. Let G D .V; E; @/ a graph. The subdivision graph SG D .A; B; O@/
is the graph with vertex set

A D V �[E
(disjoint union) and edge set

B D
[

v2V
¹vº �Ev :

Moreover,

O@WB �! A � A; b D .v; e/ 7�!
´
.O@�b; O@Cb/ D .v; e/; v D @�e;

.O@�b; O@Cb/ D .e; v/; v D @Ce:

2.2 Boundary pairs and abstract boundary value problems

Following a good tradition (
”
Was interessiert mich mein Geschwätz von gestern,

nichts hindert mich, weiser zu werden…“), we use a slightly different terminology
than in [15] and [16]; basically, we collect all data involved in a boundary pair and
put it into a quintuple:

De�nition 2.2. (1) We say that the quintuple … WD .�;G; h;H1;H/ is an abstract
boundary value problem if

� h is a closed, non-negative quadratic form densely de�ned in a Hilbert space H;
such a form is also called an energy form; we endow its domain dom h D H1

with a norm given by kf k2
H1 D h.f /C kf k2

H
; we also say that the energy form

is given by .h;H1;H/;

� G is another Hilbert space and �WH1 ! G is a bounded operator, called a bound-
ary map, such that G1=2 WD ran�.D �.H1// is dense in G.

(2) If, in addition,H1;D WD ker� is dense inH, we say that the abstract boundary
value problem… has a dense Dirichlet domain.1

(3) We say that the abstract boundary value problem… is bounded if � is surjec-
tive, i.e., if ran� D G.

(4) We say that the abstract boundary value problem … is trivial if G D H and
� D id.

1A pair .�;G/ is called boundary pair associated with the quadratic form h in [16] if ran� is dense in
G and ker� is dense in H. If only ran� is dense in G, then .�;G/ is called a generalised boundary pair
in [16].
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A typical situation is H D L2.X; �/ and G D L2.Y; �/, where .X; �/ and .Y; �/
are measured spaces such that Y � X is measurable. The abstract boundary value
problem has a dense Dirichlet domain iff �.Y / D 0. The abstract boundary value
problem is trivial if and only if .X; �/ D .Y; �/ and � D id.

Given an abstract boundary value problem, we can de�ne the following objects
(details can be found in [16]):

� the Neumann operator H as the operator associated with h;

� the Dirichlet operator HD as the operator associated with the closed (!) form
h�ker� with domain H1;D WD ker�;

� the space of weak solutions

N1.z/ D ¹h 2 H1 j h.h; f / D zhh; f i for all f 2 H1;DºI

� for z … �.HD/, H1 D H1;D PCN1.z/ (direct sum with closed subspaces); in
particular, the Dirichlet solution operator

S.z/ D .��N1.z//
�1W ran� D G

1=2 �! N1.z/ � H1

is de�ned; we also set S WD S.�1/, i.e., the default value of z is �1;
� for z … �.HD/, the Dirichlet–to–Neumann (sesquilinear) form lz is de�ned via
lz.';  / D .h � z1/.S.z/'; S.�1/ /, ';  2 G

1=2;

� we endowH1 with its natural norm given by kf k2
H1 D h.f /C kf k2

H
;

� we endow G
1=2 with the norm given by k'k2

G
1=2

D l�1.'/ D kS'k2
H1 ;

� if the abstract boundary value problem is bounded, then G
1=2 D G, and the two

norms are equivalent; moreover, lz is a bounded sesquilinear form on G � G.

For an abstract boundary value problem, one can always construct another bound-
ary map � 0WW ! G which is de�ned on a subspace W of H1 \ domHmax, where
Hmax WD .Hmin/� andHmin WD HD\H denote the maximal resp. minimal operator,
and on which � 0 is bounded. Moreover, one has the following abstract Green’s (�rst)
formula

h.f; g/ D hHmaxf ; giH C h� 0f ; �giG (2)

for all f 2 W and g 2 H1.
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Another property is also important (see [16] for details):

De�nition 2.3. We say that an abstract boundary value problem… (or the boundary
pair .�;G/) is elliptically regular if the associated Dirichlet solution operator

S WD S.�1/WG1=2 �! H1

extends to a bounded operator xS WG ! H, or equivalently, if there exists a constant
c > 0 such that kS'kH � ck'kG for all ' 2 G

1=2.

All our abstract boundary value problems treated in this note will be elliptically
regular. They have the important property that the Dirichlet–to–Neumann form lz
is closed as form in G with domain dom lz D G

1=2 D ran� , and hence is associ-
ated with a closed operator ƒ.z/, called Dirichlet–to–Neumann operator; moreover,
the domain G1 WD domƒ.z/ of ƒ.z/ is independent of z 2 C n �.HD/. Another
important consequence is the following formula on the difference of resolvents: Let
z 2 C n .�.H/ [ �.HD//, then

.H � z/�1 D .HD � z/�1 C xS.z/ƒ.z/�1 xS. Nz/�: (3)

As a consequence of (3), one has, e.g., the spectral characterisation

� 2 �.H/ () 0 2 �.ƒ.�// (4)

for all � 2 R n �.HD/.

Examples 2.4. Important examples of elliptically regular abstract boundary value
problems are the following ones.

(1) Let .X; g/ be a Riemannian manifold with compact smooth boundary .Y; h/,
then

… D .�;L2.Y; h/; h;H
1.X; g/;L2.X; g//

is an elliptically regular abstract boundary value problem with dense Dirichlet do-
main. Here, �f D f �Y is the Sobolev trace, and the energy form is

h.f / D
ˆ

X

jdf j2g d volg :

This example is actually the godfather of the above-mentioned names for the de-
rived objects: e.g., the Dirichlet resp. Neumann operators are actually the Dirichlet
and Neumann Laplacians, the Dirichlet solution operator is the operator solving the
Dirichlet problem (also called Poisson operator), the abstract Green’s formula (2) is
the usual one with � 0f being the normal outwards derivative andW D H

2.X/, e.g.,
and the Dirichlet–to–Neumann operator has its standard interpretation.
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(2) Bounded abstract boundary value problems (i.e., abstract boundary value
problems, where ran� D G, or equivalently, where the Dirichlet–to–Neumann
operator is bounded), and in particular abstract boundary value problems with �nite
dimensional boundary space G, are elliptically regular.

(3) Let G D .V; E; @/ be a graph. For simplicity, we consider only the nor-
malised Laplacian here. We de�ne an energy form via

h.f / D
X

e2E
jf .@Ce/ � f .@�e/j2

for f 2 H1 D H D `2.V; deg/, where kf k2
`2.V;deg/

D P
v2V jf .v/j2 deg v.

Using (1) it is not hard to see that 0 � h.f / � 2kf k2
`2.V;deg/

. The boundary

of G is just an arbitrary non-empty subset @V of V (in particular, the degree of a
“boundary vertex” can be arbitrary). Set G D `2.@V; deg/ and �f D f �@V . Then
… D .�; `2.@V; deg/; h; `2.V; deg/; `2.V; deg// is an elliptically regular abstract
boundary value problem without dense Dirichlet domain (see Section 6.7 of [16]).

The Neumann operator acts as

.Hf /.v/ D .�Gf /.v/ WD 1

deg v

X

e2Ev

.f .v/� f .ve// (5)

for v 2 V , where ve denotes the vertex adjacent with e and opposite to v. The

Dirichlet operator acts in the same way on `2. VV; deg/ where VV WD V n @V are the in-
terior vertices (note that the Dirichlet Laplacian is not the Laplacian on the subgraph
VG WD . VV; VE; V@/ with VE WD E. VV; VV / and V@ WD @� VE , as the degree is still calculated
in the entire graph G and not in VG).

Moreover, the decomposition

H D `2.V; deg/ D `2.@V; deg/˚ `2.
VV; deg/ D G ˚ ker�

yields a block structure for H , namely,

H D
�
A B

B� D

�

with AWG ! G, B W ker� ! G and Dirichlet operator

D D HDW ker� �! ker�:

The Dirichlet–to–Neumann operator is

ƒ.z/ D .A � z/ � B.D � z/�1B�
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provided z … �.HD/ D �.D/. Moreover, the second boundary map

� 0WW D `2.V; deg/ �! G D `2.@V; deg/

in Green’s formula (2) is here

.� 0f /.v/ D 1

deg v

X

e2Ev

.f .v/ � f .ve//; v 2 @V;

for f 2 W D `2.V; deg/, or in block structure, � 0 D .A; B/.
Note that we have not excluded the extreme (or trivial) case @V D V leading to a

trivial abstract boundary value problem with � D id`
2
.V /. In this case, ker� D ¹0º,

hence A D H , B D 0,HD D D D 0 and �.HD/ D ;. Moreover, ƒ.z/ D H � z.
(4) Let X be a metric graph (with underlying discrete graph G D .V; E; @/ and

edge length function
`WE �! .0;1/; e 7�! `e;

(see, e.g., [2] or Section 2.2 of [15]) such that

`0 D inf
e2E

`e > 0:

A bounded (hence elliptically regular) abstract boundary value problem is given by
… D .�; `2.V; deg/; h;H

1.X/;L2.X//, where

�f D f �V

is the restriction of functions on X to the set of vertices,

h.f / D
ˆ

X

jf 0.x/j2 dx D
X

e2E

ˆ `e

0

jf 0
e .xe/j2 dxe;

and
f 2 H

1.X/ D
M

e2E
H
1.Œ0; `e�/ \ C.X/:

In this case, the Neumann operatorH is the Laplacian with standard or (generalised)
Neumann or Kirchhoff 2 vertex conditions and the Dirichlet operatorHD is the direct
sum of the Dirichlet Laplacians on the intervals Œ0; `e�, hence decoupled (see [13]
and [15] for details).

2When one calls these vertex conditions “Kirchhoff” as a coauthor of Pavel, one always ends up
with at least a footnote (as in my �rst collaboration with Pavel [5]). For Pavel, the current conservation
usually associated with this name, refers to the probability current, which is preserved for any self-adjoint
vertex condition. Many other authors think of a more naive current, de�ned by a derivative considered
as vector �eld.
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2.3 Convergence of abstract boundary value problems acting in

different spaces

We now de�ne a concept of a “distance” ı for objects of abstract boundary value prob-
lems… and y… acting in different spaces. One can think of y… as being a perturbation
of…, and ı measures quantitatively, how far away y… is from being isomorphic with
… (see Example 2.10 below for the case ı D 0). The term “convergence” refers to the
situation where we consider a family .…"/"�0 of abstract boundary value problems;
one can think of y… D …" and … D …0 with “distance” ı". If ı" ! 0 as " ! 0

then we say that…" converges to…0. Details of this concept of a “distance” between
operators acting in different spaces can also be found in Chapter 4 in [15].

To be more precise, let … D .�;G; h;H1;H/ and y… D .y�; yG; Oh; yH1; yH/ be two
abstract boundary value problems. Recall that H1 is the domain of a closed non-
negative form h in the Hilbert space H, and that �WH1 ! G is bounded with dense
range, and similarly for the tilded objects. We need bounded operators

J WH �! yH; J 0W yH �! H; I WG �! yG; I 0W yG �! G; (6a)

called identi�cation operators which replace unitary or isomorphic operators. The
quantity ı > 0 used later on measures how far these operators differ from isomor-
phisms. We also need identi�cation operators on the level of the energy form do-
mains, namely

J 1WH1 �! yH1 and J 01W yH1 �! H1: (6b)

In contrast to [3] we will not assume in this note that the identi�cation operators I
and I 0 on the boundary spaces G and yG also respect the form domains G1=2 and yG1=2

of the Dirichlet–to–Neumann operators.

We start with the energy forms and boundary maps:

De�nition 2.5. Let ı > 0. We say that the energy forms h and Oh are ı-close if there
are identi�cation operators J 1 and J 01 as in (6) such that

jOh.J 1f; u/ � h.f; J 01u/j � ıkuk yH1kf kH1

holds for all f 2 H1 and u 2 yH1.
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De�nition 2.6. Let ı > 0. We say that the boundary maps � and y� are ı-close if
there exist identi�cation operators J 1, J 01, I and I 0 as in (6) such that

k.I� � y�J 1/f kyG � ıkf kH1

and

k.I 0 y� � �J 01/ukG � ıkuk yH1

hold for all f 2 H1 and u 2 yH1.

So far, we have only dealt with forms and their domains. Let us now de�ne the
following compatibility between the identi�cation operators on the Hilbert space and
the energy form level:

De�nition 2.7. We say that the identi�cation operators J , J 0, J 1 and J 01 are ı-quasi-
unitarily equivalent with respect to the energy forms h and Oh if

jhJf ; ui yH � hf; J 0uiHj � ıkf kHkuk yH;

kf � J 0Jf kH � ıkf kH1 ;

ku � JJ 0uk yH � ıkuk yH1;

kJ 1f � Jf k yH � ıkf kH1 ;

kJ 01u � J 0ukH � ıkuk yH1

hold for f and u in the respective spaces. We say that the forms h and Oh are ı-quasi-
unitarily equivalent, if they are ı-close with ı-quasi-unitarily equivalent identi�ca-
tion operators.

For the boundary identi�cation operators I and I 0 we de�ne:

De�nition 2.8. We say that the identi�cation operators I and I 0 are ı-quasi-isomor-
phic with respect to the abstract boundary value problems … and y… if

k' � I 0I'kH � ık'k
G

1=2 ; k � II 0 k yH � ık kyG1=2

hold for ' 2 G
1=2 and  2 yG1=2. We say that the boundary maps � and y� are

ı-quasi-isomorphic if they are ı-close with ı-quasi-unitarily equivalent J , J 0, J 1
and J 01 resp. ı-quasi-isomorphic I and I 0.
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The ı-quasi-isomorphy only refers to the Dirichlet–to–Neumann form l�1 in
z D �1 as k'k2

G
1=2

D l.'/ D kS.�1/'k2
H1 and no other structure of …; a similar

note holds for y…. We do not assume that I� is closed to I 0, as this is too restrictive for
De�nition 2.9 (see, e.g., the proof of Proposition 2.11: I� D I 0 would mean  D 1).

Finally, we de�ne what it means for abstract boundary value problems to be
“close” to each other, by combining the last four de�nitions:

De�nition 2.9. Let ı > 0. We say that the abstract boundary value problems …
and y… are ı-quasi-isomorphic if there exist ı-quasi-unitarily equivalent identi�cation
operators J , J 0, J 1 and J 01 and ı-quasi-isomorphic identi�cation operators I and I 0
for which h and Oh, respectively, � and y� are ı-close.

Let us illustrate this concept in two examples.

Example 2.10. A good test for a reasonable de�nition of a “distance” is the case
ı D 0: if… and y… are 0-quasi-isomorphic then J is unitary with adjoint J 0; J 1 and
J 01 are restrictions of J and J �, respectively. Moreover, J intertwines H and yH in
the sense that J.H C 1/�1 D . yH C 1/�1J ; and I is a bi-continuous isomorphism
with inverse I 0, and � and y� are equivalent in the sense that y� D I�J 01. We call
such abstract boundary value problems isomorphic.

Another rather trivial case is the following: it nevertheless plays an important
role in the study of shrinking domains like an "-homothetic vertex neighbourhood
shrinking to a point in the limit " ! 0 (i.e., we use the abstract boundary value prob-
lem y… D …" associated with a compact and connected manifold X of dimension
d � 2 with boundary Y D @X and metric "2g as in Example 2.4 (1); in this case,
ı D O.

p
"/, see Section 5.1.4 of [15] for details, also for the validity of (7)):

Proposition 2.11. Assume that y… D .y�; yG; Oh; yH1; yH/ is an abstract boundary value
problem such that the corresponding Neumann operator yH has 0 as simple and iso-
lated eigenvalue in its spectrum. Assume also that there is a 2 .0; 1� such that

ky�uk2yG � a Oh.u/C 2

a
kuk2yH (7)

holds for all u 2 yH1 .
Moreover, let… D .id;C; 0;C;C/ be a trivial abstract boundary value problem.

Then y… and … are ı-quasi-isomorphic with ı depending only on parameters of y…
and a, see (8) for a precise de�nition of ı.
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Proof. Let ˆ0 be a normalised eigenvector associated with the eigenvalue 0 of yH .
As 0 2 �. yH/, we also have 0 2 �.yƒ.0// with eigenvector ‰0 D y�ˆ0 (see Theo-
rem 4.7 (i) in [16]). In particular,  WD ky�ˆ0k�2

yG is de�ned. For the identi�cation
operators, we set

Jf D fˆ0; J 1f D Jf;

J 0u D J �u D hu;ˆ0i yH;

J 01u D J �u; I' D '‰0

and I 0 D I�, where I� D h ;‰0iyG. The choice of  implies that I 0I' D ', and

k � II 0 k2yG D k � h ;‰0iyG‰0k2yG � 1

�1
Ol0. /

as
p
‰0 is a normalised eigenfunction of yƒ.0/ corresponding to the eigenvalue 0,

where �1 WD d.�.yƒ.0// n ¹0º; 0/ and Ol0 is the associated quadratic form. As � 7! Ol�
is monotonously decreasing (see Theorem 2.12 (v) in [16]), we have the estimate
Ol0. / � Ol�1. / DW k k2yG1=2

. In particular, I and I 0 are .1=p
�1/-quasi-isomorphic,

see De�nition 2.8.
For the ı-closeness of the forms resp. the boundary maps we have

Oh.J 1f; u/ � h.f; J 01u/ D 0;

.I� � y�J 1/f D If � y�f ˆ0 D f � .‰0 � O�ˆ0/ D 0;

and
.I 0 y� � �J 01/u D h y�u;‰0iyG � hu;ˆ0i yH

D h y�u;‰0iyG � h‰0; ‰0iyGhu;ˆ0i yH
D hy�.u� hu;ˆ0i yHˆ0/; ‰0iyG:

The latter inner product can be estimated in squared absolute value by

j.I 0 y� � �J 01/uj2 � ky�.u � hu;ˆ0i yHˆ0/k2yG
� 

�
a Oh.u/C 2

a
ku� hu;ˆ0i yHˆ0k2yH

�

� 
�
a C 2

a�1

�
Oh.u/;

using (7), where �1 WD d.�. yH/ n ¹0º; 0/. Note that Oh.u � hu;ˆ0i yHˆ0/ D Oh.u/ as
yHˆ0 D 0 and hence Oh.w;ˆ0/ D hw; yHˆ0i D 0 for any w 2 yH1.
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Finally, J �Jf D f and

ku � JJ �uk2yH D ku � hu;ˆ0i yHˆ0k2yH � 1

�1
Oh.u/:

Therefore we can choose

ı D max
° 1p

�1
;

1

ky�ˆ0kyG

r
aC 2

a�1
;
1p
�1

±
: (8)

This concludes the proof.

3 Abstract graph-like spaces

Let us �rst explain the philosophy brie�y. In the below-mentioned different couplings
of abstract boundary value problems according to a graph, we show that the Neumann
operator is coupled, while the Dirichlet operator is always a direct sum of the building
blocks, i.e., decoupled. Moreover, we give formulas for how the coupled operators
can be calculated from the building blocks. We also analyse how the coupled opera-
tors such as the Dirichlet–to–Neumann operator resemble discrete Laplacians on the
underlying or related graphs, allowing a deeper understanding of the problem and
relating it to problems of graph Laplacians.

In particular, the resolvent formula (3) gives an expression of a globally de�ned
object, namely the coupled Neumann operator in terms of objects from the building
blocks (see, e.g., the formulas for HD, S.z/ and ƒ.z/ in Theorems 3.3 and 3.7).
Hence the understanding of the nature howƒ.z/ is obtained from the building blocks
is essential in understanding the global operator H .

3.1 Direct sum of abstract boundary value problems

Given a family .…˛/˛2A of abstract boundary value problems, we de�ne the direct
sum via3 M

˛2A
…˛ WD

�M

˛2A
�˛;

M

˛2A
G˛;

M

˛2A
h˛;

M

˛2A
H1
˛;
M

˛2A
H˛

�
:

3The direct sum of Hilbert spaces always refers to the Hilbert space closure of the algebraic direct
sum in this note.
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The direct sum is an abstract boundary value problem provided sup˛2A k�˛k < 1.
As the direct sum is not coupled, we also call them decoupled and write

…dec D .�dec;Gdec; hdec;H1;dec;Hdec/ WD
M

˛2A
…˛:

All derived objects such as the Dirichlet solution operator or the Dirichlet–to–Neu-
mann operator are also direct sums of the correspondent objects.

3.2 Vertex coupling

We now construct a new space from building blocks associated with each vertex. Let
G D .V; E; @/ be a graph. For each vertex v 2 V we assume that there is an abstract
boundary value problem …v D .�v;Gv; hv;H

1
v;Hv/.

De�nition 3.1. We say that the family of abstract boundary value problems .…v/v2V
allows a vertex coupling, if the following holds:

1. supv2V k�vk < 1;

2. there is a Hilbert space Ge and a bounded operator �v;eWGv ! Ge for each edge
e 2 E. Let

Gmax
v WD

M

e2Ev

Ge

and
�vWGv �! Gmax

v ; �v'v D .�v;e'v/e2Ev :

We assume that �v is an isometric embedding.

3. Assume that
ran�@�e;e D ran�@Ce;e DW G1=2

e

for all edges e 2 E, where

�v;e WD �v;e�vWH1
v �! Ge :

We set
�v WD ��v WGmax

v �! Gv;

then
�v D

X

e2Ev

��
v;e e :

We say that the vertex coupling is maximal if �v is surjective (hence unitary).
In this case, we often identify Gv with Gmax

v .
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We start with an example with maximal vertex coupling spaces Gv Š Gmax
v

(an example with non-maximal vertex coupling spaces will be given in Section 3.5):

Example 3.2. Assume that we have a graph-like manifold X (without edge contri-
butions), i.e., X D S

v2V Xv such that Xv is closed in X and Ye WD X@�e \X@Ce is
a smooth submanifold. Then Hv D L2.Xv/, hv.f / D ´

Xv
jdf j2, dom hv D H1

v D
H
1.Xv/ and Gv D L2.@Xv/, �vf D f �@Xv

; and …v D .�v;Gv; hv;H
1
v;Hv/ is an

abstract boundary value problem. Moreover, .…v/v allows a vertex coupling with
Ge D L2.Ye/ with maps �v;e W L2.@Xv/ ! L2.Ye/ being the restriction of a function
on @Xv onto one of its components Ye � @Xv. Note that ran�@˙e;e D H

1=2.Ye/. As

Gmax
v WD

M

e2Ev

Ge D
M

e2Ev

L2.Ye/ D L2.@Xv/ D Gv;

the vertex coupling is maximal. Condition (1) is typically ful�lled, if the length of
each end of a building block Xv is bounded from below by some constant `0=2 > 0.

We construct an abstract boundary value problem … D .�;G; h;H1;H/ from
.…v/v as follows:

H WD
M

v2V
Hv; H1;dec WD

M

v2V
H1
v; hdec WD

M

v2V
hvI

H1 WD ¹f D .fv/v2V 2 H1;dec jfor all e 2 E; @e D .v; w/W
�v;efv D �w;efw DW �ef º;

h WD hdec�H1 ; G WD
M

e2E
Ge; �WH1 �! G; �f D .�@˙e;ef@˙e/e2E :

Denote by � the map

�WG D
M

e2E
Ge �! Gdec D

M

v2V
Gv; .�'/v D �v N

'.v/ D
X

e2Ev

��
v;e'e;

where
N
'.v/ D .'e/e2Ev 2 Gmax

v (see De�nition 3.1 for the notation). It is easy to see
that ��WGdec ! G acts as

.�� /e D
X

vD@˙e

�v;e .v/
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Theorem 3.3. Assume that .…v/v2V is a family of abstract boundary value problems
allowing a vertex coupling, then the following holds.

(1) The quintuple … D .�;G; h;H1;H/ as constructed above is an abstract boun-
dary value problem.

(2) We have

ker� D
M

v2V
ker�v; HD D

M

v2V
HD
v

(i.e., the Dirichlet operator is decoupled) and

�.HD/ D
[

v2V
�.HD

v /:

(3) In particular, if all abstract boundary value problems …v have dense Dirichlet
domain then… also has dense Dirichlet domain.

(4) The Neumann operator is coupled and f 2 domH if and only if f 2 Lv2V Wv

and

�v;efv D �w;efw ; � 0
v;efv C � 0

w;efw D 0 for all e 2 E; @e D .v; w/

withHf D .Hmaxf /v2V (see (2) for the notation).

(5) We have

S.z/' D S dec.z/�' D
M

v2V
Sv.z/N

'.v/ for z … �.HD/.

(6) Moreover, if all…v are elliptically regular such that

sup
v2V

kSvkGv!Hv < 1;

then… is also elliptically regular.

(7) We have ƒ.z/ D ��ƒdec.z/� for z 2 C n �.HD/, i.e.,

.ƒ.z/'//e D
X

vD@˙e

�v;e.ƒv.z/N
'.v//:
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Proof. (1) The spaceH1 is closed in H1;dec as intersection of the closed spaces

¹ f 2 H1;dec j�@�e;ef@�e D �@Ce;ef@Ce º

(note that since �v;e are bounded operators, the latter sets are closed). Hence H1 is
closed and h is a closed form. Moreover, the operator � is bounded, as

k�f k2G D
X

e2E
k�ef k2Ge

D 1

2

X

v2V

X

e2Ev

k�v;efvk2Ge
D 1

2

X

v2V
k�v�vfvk2Gmax

v

using (1) and this can be estimated by .1=2/ supv k�vk2kf k2
H1 as �v is isometric.

Finally, as ran�v D G
1=2
v is dense in Gv we also have that ran�v;e is dense in

Gv;e (applying the bounded operator �v;eWGv ! Ge to a dense set). As ran� DL
e2E ran�e (algebraic direct sum) with ran�e D ran�@˙e;e, the density of ran�

in G follows.

(2)We have f 2 Lv2V ker�v if and only if fv 2 ker�v for all v 2 V . Moreover,
ker�v D T

e2Ev
ker�v;e as

T
e2Ev

ker�v;e D ¹0º � Gv (using the injectivity of �v ,
see De�nition 3.1 (2)). By de�nition, �e WD �v;e for v D @˙e, hence we have

ker� D
M

e2E
ker�e D

M

v2V
ker�v:

(3) In particular, if all spaces ker�v are dense in Hv, then ker� is dense in H.

(4) follows from a simple calculation using (2) on each abstract boundary value
problem …v .

(5) is obvious, as well as (6)

(7) The formula follows from lz.';  / D .h� z1/.S.z/'; S.�1/ / and part (5).

Examples 3.4. (1) In Example 3.2, the entire space isH D L2.X/ and the Neumann
operator is the usual Laplacian on the graph-like manifold X .

(2) Assume that G D .V; E; @/ is a discrete graph. We decompose G into its star
componentsGv D .¹vº �[Ev; Ev; O@/, i.e., each edge inG adjacent to v becomes also
a vertex in Gv . As boundary of Gv we set @Gv D Ev If we identify the new vertices
e 2 V.G@�e/ and e 2 V.G@Ce/ of the star components G@�e and G@Ce for all edges
e 2 E we just obtain the subdivision graph SG (see De�nition 2.1).
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Let…v be the abstract boundary value problem associated with the graphGv and
boundary @Gv D Ev , i.e.,

…v D .CEv ; �v; hv;C
Ev �[¹vº;CEv �[¹vº/;

with �vf D f �Ev
(see Example 2.4 (3)), where CEv WD ¹ 'WEv ! C j' map º

denotes the set of maps or families with coordinates indexed by e 2 Ev . Denote for
short dv D deg v. Of course, CEv is isomorphic to Cdv , but this isomorphism needs
a numbering of the edges which is unimportant for our purposes. The Neumann
operator, written as a matrix with respect to the orthonormal basis 'v WD d

�1=2
v ıv

(v 2 V ), has block structure Av D idEv (identity matrix of dimension dv), Bv D
�d�1=2

v .1; : : : ; 1/T andDv D 1. In particular, the Dirichlet–to–Neumann operator is
ƒv.z/ D .1�z/ idEv �.dv.1�z//�11Ev�Ev , where 1Ev�Ev is the .dv�dv/-matrix
with all entries 1.

The vertex-coupled abstract boundary value problem … of the family
.…v/v2V (it is clear that this family allows a vertex coupling) is now the abstract
boundary value problem of the subdivision graph SG ofG with boundary @SG D E,
the edges of G. More precisely, we have already identi�ed the subspace

°
' 2

M

v2V
`2.Gv/

ˇ̌
ˇ fv;e D fw;e for all e 2 E; @e D .v; w/

±
;

with `2.SG/. The coupled Neumann operator is the Laplacian of the subdivision
graph SG, i.e., H D �SG . Note that we can embed `2.G/ into `2.SG/, f 7! Of ,
with Of .v/ D f .v/ and Of .e/ D .f .@Ce/Cf .@�e//=2; moreover, 2hG.f / D hSG. Of / for
the corresponding energy forms. The coupled Dirichlet–to–Neumann operator is

.ƒ.z/'//e D 2.1� z/'e � 1

1 � z
X

vD@˙e

1

deg v

X

e02Ev

'e0 :

For z D 0, this is just the formula for a Laplacian on the line graph LG of G (the
line graph has as vertices the edges of G, and two such edges are adjacent, if they
meet in a common vertex, see, e.g., Example 3.14 (iv) in [14]). In particular, if G is
r-regular, then LG is .2r � 2/-regular and

ƒ.z/ D 2.1� z/ � 2r � 2
.1 � z/r .1��LG/:

In particular, applying the spectral relation (4) to the last example (the Dirichlet
spectrum of all star components is ¹1º asHD

v D Dv D 1) we rediscover the following
result (see [17]):
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Corollary 3.5. The spectra of the subdivision and line graph of an r-regular graph
are related by

� 2 �.�SG/ () 1� r

r � 1
.1� �/2 2 �.�LG/

provided � ¤ 1.

3.3 Edge coupling

Let us now couple abstract boundary value problems indexed by the edges of a given
graph G D .V; E; @/: For each edge e 2 E we assume that there is an abstract
boundary value problem …e D .�e;Ge; he;H

1
e ;He/.

De�nition 3.6. We say that the family of abstract boundary value problems .…e/e2E
allows an edge coupling, if the following holds:

1. supe2E k�ek < 1;

2. for each vertex e 2 E there is a decomposition Ge D Ge;@�e ˚ Ge;@Ce and
�ef D �e;@�ef ˚ �e;@Cef , where �e;vWH1

e ! Ge;v .

We set Gmax
v WD L

e2Ev
Ge;v .

Note that the sum over all maximal spaces Gmax
v is the decoupled space, as

Gmax WD
M

v2V
Gmax
v D

M

v2V

M

e2Ev

Ge;v D
M

e2E

M

vD@˙e

Ge;v D
M

e2E
Ge D Gdec:

Denote
N
'.v/ WD .'e.v//e2Ev 2 Gmax

v the collection of all edge contributions at the
vertex v 2 V , where 'e D .'e.@�e/; 'e.@Ce// 2 Ge;@�e ˚ Ge;@Ce.

Let Gv � Gmax
v be a closed subspace for each v 2 V . We construct an abstract

boundary value problem … D .�;G; h;H1;H/ from the family .…e/e and the sub-
space G WD L

v Gv as a restriction of the decoupled abstract boundary value problemL
e2E …e (see Section 3.1):

H WD
M

e2E
He; H1;dec WD

M

e2E
H1
e ; hdec WD

M
heI

H1 WD ¹ f D .fe/e2E 2 H1;dec j�decf 2 G º; h WD hdec�H1 ; � WD �dec�H1

where �decWH1;dec ! Gdec D Gmax. Denote by � the embedding �WG ! Gdec.
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Theorem 3.7. Assume that .…e/e2E is a family of abstract boundary value problems
allowing an edge coupling and let Gv � Gmax

v be a closed subspace for each v 2 V ,
then the following holds.

(1) The quintuple … D .�;G; h;H1;H/ as constructed above is an abstract boun-
dary value problem.

(2) We have
ker� D

M

e2E
ker�e; HD D

M

e2E
HD
e

(the Dirichlet operator is decoupled) and

�.HD/ D
[

e2E
�.HD

e /:

(3) In particular, if all abstract boundary value problems …e have dense Dirichlet
domain then… also has dense Dirichlet domain.

(4) The Neumann operator is coupled and is given by

domH D
°
f 2

M

e2E
We

ˇ̌
ˇ�f 2 G; � 0f 2 Gmax 	 G

±

withHf D .Hmaxf /v2V (see (2) for the notation).

(5) We have
S.z/' D S dec.z/' D

M

e2E
Se.z/'e;

where ' 2 G � Gdec.

(6) Moreover, if all …e are elliptically regular with uniformly bounded elliptic reg-
ularity constants (i.e., supe2E kSekGe!He < 1), then … is also elliptically
regular.

(7) We have ƒ.z/ D ��ƒdec.z/�, i.e., if  D ƒ.z/', then

N
 .v/ WD . e/e2Ev D �v..ƒe.z/'e/.v//e2Ev

for z … �.HD/, where �vWGmax
v ! Gv is the adjoint of �vWGv ! Gmax

v .

Proof. The proof is very much as the proof of Theorem 3.3: (1) The operator �dec is
bounded, andH1 is closed inH1;dec as preimage of the closed subspace G under �dec;
in particular, � is bounded. Moreover, ran� D �.H1/ D �dec.H1/ D G\�dec.H1/;
since �dec.H1/ is dense (as all components �e.H1

e / are dense in Ge , the space ran�
is also dense in G.

(2)–(7) can be seen similarly as in the proof of Theorem 3.3.
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Examples 3.8. Let us give some important examples of subspaces G of Gmax:

1. Edge coupling of two-dimensional abstract boundary value problems

Assume that all vertex components Ge;v equal C. Then Gmax
v D CEv and we

choose for example Gv WD C.1; : : : ; 1/ (standard or Kirchhoff vertex conditions),
where .1; : : : ; 1/ 2 CEv has all .deg v/-many components 1. It is convenient to
choose jwjdegv D jwjpdeg v as norm on C (then C.1; : : : ; 1/ � CEv is iso-
metrically embedded in .C; j�jdeg v/ via .�; : : : ; �/ 7! �). A vector

N
�.v/ is of

course characterised by the common scalar value �.v/ 2 C and the projection
�v N
 .v/ D . e.v//e2Ev is characterised by the sum .deg v/�1

P
e2Ev

 e.v/.
Hence we can write the Dirichlet–to–Neumann operator as

.ƒ.z/'/.v/ D 1

deg v

X

e2Ev

.ƒe.z/'e/.v/ (9)

for ' 2 G D `2.V; deg/. This formula is a generalisation of the formula for
the discrete (normalised) Laplacian. One can also choose a more general sub-
space Gv � Gmax

v D CEv , the resulting Dirichlet–to–Neumann operators look like
generalised discrete Laplacians described, e.g., in Section 3 of [13] or Section 3
of [14]. A similar approach has been used in [12].

2. Edge coupling of two-dimensional trivial abstract boundary value problems

gives back the original discrete graph

Let us now treat a special case of (1): Let …e D .id;C2; he;C2;C2/ be a trivial
abstract boundary value problem for each e 2 E. The abstract boundary value
problem …v can be understood as coming from a graph consisting only of two
vertices @˙e and one edge e, and both vertices belong to the boundary. The energy
form is he.f / D jf2 � f1j2 for f D .f1; f2/ 2 C2, see Example 2.4 (3)). In this
case,

ƒe.z/ D
�
1 � z �1
�1 1 � z

�

and the Dirichlet–to–Neumann operator becomes

.ƒ.z/'/.v/ D 1

deg v

X

e2Ev

.'.v/� '.ve// � z'.v/;

i.e., ƒ.z/ D �G � z, i.e., the Dirichlet–to–Neumann operator is just the shifted
normalised Laplacian onG. Note that in this case, the Neumann Laplacian is also
the Dirichlet–to–Neumann operator at z D 0, i.e., H D ƒ.0/ D �G , as the
global form h is h.f / D P

e he.fe/.
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3. Standard vertex conditions

Here, we describe an edge coupling with a special choice of vertex spaces
Gv � Gmax

v , similar to the standard or Kirchhoff vertex conditions of a quantum
graph.

Assume that for given v 2 V , the vertex component Ge;v of Ge equals a given
Hilbert space Gv;0 for all e 2 Ev . Then

Gv WD ¹
N
�.v/ D .�; : : : ; �/ 2 Gmax

v j � 2 Gv;0 º

is a closed subspace (i.e., Gv consists of the .deg v/-fold diagonal of the model
space Gv;0). In the above two examples, we treated the case Ge;v D C. A vec-
tor

N
�.v/ is characterised by �.v/ and the projection �v N

 .v/ D . e.v//e2Ev

is characterised by the sum .deg v/�1
P
e2Ev

 e.v/. Hence we can write the
Dirichlet–to–Neumann operator exactly as in (9). This formula is a vector-valued
version of a normalised discrete Laplacian (see (13) for a more concrete formula).

3.4 Vector-valued quantum graphs

Let I D Œa; b� be a compact interval of length ` D b � a > 0, and letK be a Hilbert
space with non-negative closed quadratic form k � 0 such that its corresponding
operator has purely discrete spectrum. We set H WD L2.I;K/ Š L2.I / ˝ K and
de�ne an energy form via

h.f / WD
ˆ

I

.kf 0.t /k2K C k.f .t/// dt

for f 2L2.I;K/ such that f 2C
1.I;K/ and f .t/2dom k for almost all t 2I . Denote

by h also the closure of this form. As boundary space set G WD K ˚ K Š K ˝ C2

and de�ne �f WD .f .a/; f .b//. It is not hard to see that… D .�;G; h; domh;H/ is
an elliptically regular abstract boundary value problem with dense Dirichlet domain;
moreover, the norm of � is bounded by

p
coth. =̀2/ (see, e.g., Sections 6.1 and 6.4

of [16]). We call … the abstract boundary value problem associated with .k;K; I /.
Moreover, as the underlying space of … has a product structure, we can calculate
all derived objects explicitly. For example, the Dirichlet–to–Neumann operatorƒ.z/
is an operator function of a matrix with respect to the decomposition G D K ˚ K.
In particular, we have ƒ.z/ D ƒ0.z �K/, where K is the operator associated with
k and where

ƒ0.z/ D
p
z

sin.`
p
z/

�
cos.`

p
z/ �1

�1 cos.`
p
z/

�
(10)
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is the Dirichlet–to–Neumann operator for the scalar problem (K D C)

…0 D .�0;C
2; h0;H

1.I /;L2.I //

with �0f D .f .a/; f .b// and h0.f / D ´
I
jf 0.t /j2 dt (see, e.g., [3] for details).

The complex square root is cut along the positive real axis. The same argument also
works for abstract warped products.

Let us now consider vector-valued quantum graphs: Assume thatG D .V; E; @/ is
a discrete graph and that Ie is a closed interval of length `e for each e 2 E. Assume
that there is a Hilbert space Ke and energy form ke for each edge e 2 E. Then
we can edge-couple the family of abstract boundary value problem …e associated
with .ke;Ke; Ie). In order to formulate the next result, we de�ne the unoriented and
oriented evaluation of f at a vertex v and edge e by

fe.v/ D
´
fe.min Ie/; v D @�e;

fe.max Ie/; v D @Ce;
and

Õ

fe.v/ D
´

�fe.min Ie/; v D @�e;

Cfe.max Ie/; v D @Ce;

for f 2 Le2E H
1.Ie;Ke/.

Theorem 3.9. Let…e D .�e;Ke˚Ke; he; domhe;L2.Ie;Ke// be an abstract boun-
dary value problems associated with .ke;Ke; Ie/. Assume that the length `e of Ie
ful�ls

0 < `0 WD inf
e2E

`e : (11)

(1) Then the family .…e/e2E allows an edge coupling. As boundary space we choose
G D L

v2V Gv , where Gv is a closed subspace of Gmax
v WD L

e2Ev
Ke for each

v 2 V . ThenH acts as

.Hf /e.t / D �f 00
e .t /CKef .t/ (12a)

on each edge, whereKe is the operator associated with ke. Moreover, a function
f in the domain of the Neumann operatorH of the edge-coupled abstract boun-
dary value problem ful�ls

N
f .v/ D �

fe.v/
�
e2Ev

2 Gv and
Õ

N
f 0.v/ D � Õ

fe.v/
�
e2Ev

2 Gmax
v 	 Gv: (12b)

(2) If H is a self-adjoint operator in H D L
e2E L2.Ie;Ke/ such that (12a) holds

for all functions f D .fe/e 2 domH such that fe 2 C
2.Ie; domKe/ vanishing

near @Ie, and such that the values N
f .v/ and

Õ

N
f 0.v/ are not coupled in domH ,

then there exist closed subspaces Gv of Gmax
v for each v 2 V , such that domH is

of the form (12b).
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We callH the vector-valued quantum graph Laplacian with vertex spaces Gv and
�bre operators Ke.

Proof. Part (1) follows already from the discussion above, the fact that we have

�f D .
N
f .v//v2V and � 0f D .

Õ

N
f 0.v//v2V , and Theorem 3.7. Note that k�ek2 is

bounded by 2=min¹`0;1º, see Corollary A.2.12 in [15].
For part (2), partial integration shows that

hHf ; giH D
X

e2E

ˆ

Ie

h�f 00
e .t /CKefe.t /; ge.t /iKe dt

D
X

e2E

�
ˆ

Ie

.hf 0
e .t /; g

0
e.t /iKe C ke.fe.t /; ge.t /// dt

� Œhf 0
e .t /; ge.t /iKe �@Ie

�

D hf;HgiH C
X

e2E
Œhfe.t /; g0

e.t /iKe � hf 0
e .t /; ge.t /iKe �@Ie

for f; g 2 domH . Reordering the boundary contributions (the last sum over e 2 E)
gives

X

v2V

X

e2Ev

.h
Õ

f 0
e .v/; ge.v/iKe � hfe.v/;Õ

g0
e.v/iKe /

D
X

v2V
.h

Õ

N
f 0.v/;

N
g.v/iGmax

v
� h

N
f .v/;

Õ

N
g0.v/iGmax

v
/;

As the values
Õ

N
f 0.v/ and

N
f .v/ resp.

Õ

N
g0.v/ and

N
g.v/ are not coupled, each contribution

h
Õ

N
f 0.v/;

N
g.v/iGmax

v
and h

N
f .v/;

Õ

N
g0.v/iGmax

v
has to vanish separately. We let Gv be the

closure of the linear span of all boundary values
N
f .v/, f 2 domH . In particular, we

then have
Õ

N
f 0.v/;Õ

N
g0.v/ 2 G?

v .

Remarks 3.10. (1) For simplicity, we describe only the energy independent vertex

conditions, not involving any condition between the values
N
f .v/ and

Õ

N
f 0.v/. One can,

of course, also consider Robin-type conditions, but one needs additional �niteness or
boundedness conditions in this case.

(2) If Ke D C for all edges e 2 E, then we have de�ned an ordinary quantum
graph. For the case .ke;Ke; Ie/ D .0;K0; Œ0; 1�/ for all e 2 E, where K0 is a given
Hilbert space, see [1].
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We have not used the whole power of abstract boundary value problems here,
namely the resolvent formula (3). In this setting, the left hand side, the resolvent ofH
in z … �.H/[�.HD/, equals the right hand side, which can be expressed completely
in terms of the building blocks …e. Moreover, the Dirichlet–to–Neumann operator
has the nature of a discrete Laplacian.

If we use standard vertex conditions (see Example 3.8 (3)), we have to assume that
all boundary spacesKe are the same and equal (or can at least be naturally identi�ed
with) a Hilbert spaceK0. Then we set Gv D K0.1; : : : ; 1/, i.e., all deg v components
of

N
'.v/ 2 Gv are the same. In this case, the Dirichlet–to–Neumann operator is (see (9)

and (10))

.ƒ.z/'/.v/ D 1

deg v

X

e2Ev

.Ce.z/'.v/� Se.z/'.ve//; (13)

where

Ce.z/ D
p
z �Ke cot.`e

p
z �Ke/ and Se.z/ D

p
z �Ke

sin.`e
p
z �Ke/

:

The equilateral and standard (or Kirchhoff ) case. Let us now characterise the
spectrum of the vector-valued quantum graph Laplacian H in a special case:

Example 3.11. If all abstract boundary value problems…e are the same (or isomor-
phic) and all lengths `e are the same (say, `e D 1), then we call the vector-valued
quantum graph equilateral andKe D K0 onKe D K0 for all e 2 E). A related case
(K0 D 0) has also been treated in [1]. In the equilateral case, we have

ƒ.z/ D .1˝ 1=sin
p
z�K0/.1˝ cos

p
z �K0 � 1C�G ˝ 1/; (14)

where �G denotes the (discrete) normalised Laplacian (see (5)) and where we have
identi�ed G Š `2.V; deg/˝ K0. Since 1˝ .1=sin

p
z�K0/ is a bijective operator and

�.A ˝ 1 � 1 ˝ B/ D �.A/ � �.B/ D ¹ a � b j a 2 �.A/; b 2 �.B/ º, we have in
particular (using (4) for the �rst equivalence)

� 2 �.H/ () 0 2 �.ƒ.z//
() 0 2 ��1 � cos

p
z �K0

� � �.�G/
() �

�
1 � cos

p
z �K0

� \ �.�G/ ¤ ;
() there exists � 2 �.K0/W 1 � cos

p
z � � 2 �.�G/

provided

z … �.HD/ D �.HD
Œ0;1� ˝ 1C1˝Ke/ D ¹ .n�/2 C � j n D 1; 2; : : : ; � 2 �.K0/ º:
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We have therefore shown the following:

Corollary 3.12. Assume that all edge abstract boundary value problems …e are
the same, i.e., associated with .k0;K0; Œ0; 1�/ (see the beginning of Section 3.4), and
that all vertex spaces are standard (Gv D ¹ .'; : : : ; '/ 2 K

degv
0 j' 2 K0 º). Then

the Dirichlet–to–Neumann operator is given by (14). Moreover, the spectrum of the
vector-valued quantum graph LaplacianH is characterised by

� 2 �.H/ () there exists � 2 �.K0/W 1� cos
p
� � � 2 �.�G/

provided � … �.HD/ D ¹ .n�/2 C � j n D 1; 2; : : : I � 2 �.K0/ º.

Molchanov andVainberg [11] treated the asymptotic behaviour " ! 0 of aDirich-
let Laplacian on the productX�.M; g"/, whereX is a metric graph, .M; g/ is a com-
pact Riemannian manifold with boundary and g" D "2g. In our notation, it means
that K0 D L2.M; g"/ and K0 D �

.M;g"/
D "�2�

.M;g/
with Dirichlet boundary

conditions. It would be interesting to compare this model with the usual "-tubular
neighbourhood model with Dirichlet boundary conditions. Our methods allow such
an analysis, see Section 4.

3.5 Vertex-edge coupling

Here, we treat the coupling when there are building blocks for each vertex-edge of a
given graph G D .V; E; @/. Formally this coupling is just a vertex-based coupling
for the corresponding subdivision graph SG D .A; B; O@/ of G (see De�nition 2.1).
Assume that …a is an abstract boundary value problem for each vertex a 2 A D
V �[E of the subdivision graph. The family .…a/a2A allows a vertex-edge coupling
if the following holds:

We say that the family of abstract boundary value problems .…v/v2V allows a
vertex-edge coupling, if the following holds.

1. supa2A k�ak < 1.

2. There is a Hilbert space Ge;v for each edge v 2 V and e 2 Ev (i.e., each edge
b D .v; e/ of the subdivision graph).

For the vertex vertices of SG assume that there is a bounded operator

�v;eWGv �! Ge;v:

We set
�v;e WD �v;e�vWH1

v �! Ge;v:
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Moreover, let Gmax
v WD L

e2Ev
Ge and

�vWGv �! Gmax
v ; �v'v D .�v;e'v/e2Ev :

We assume that �v is an isometric embedding.

For the edge vertices of SG we assume that Ge D L
vD@˙e

Ge;v (i.e., the
vertex coupling is maximal at e 2 A). We set

�e;vWH1
e �! Ge;v; �e;vfe WD .�e'e/v:

3. For each edge .v; e/ 2 B , assume that ran�v;e D ran�e;v DW G1=2
e;v .

The formulas for the (subdivision) vertex-coupled abstract boundary value prob-
lem can be taken from Section 3.2 verbatim. Let us give two typical examples of such
couplings.

Vertex-edge coupling with maximal coupling space: shrinking graph-like man-

ifolds. Consider a thin neighbourhood X D X" of an embedded metric graph X0
or a thin graph-like manifold of dimension d � 2 and decompose X D X" into its
closed vertex and edge neighbourhoods Xv D X";v and Xe D X";e, respectively
(see, e.g., [5], [7], or [15]). We omit the shrinking parameter " > 0 in the sequel, as
it does not affect the coupling.

The abstract boundary value problems …v and …e are the ones for Xv and Xe
with (internal) boundary @Xv and @Xe given as follows: Let Ye;v WD Xe \ Xv and
assume that Ye;v is isometric with a smooth .d � 1/-dimensional manifold Ye for
v D @˙e. The (internal) boundary of Xv and Xe is now @Xv D S

e2Ev
.Xv \ Xe/

and @Xe D S
vD@˙e

.Xv \ Xe/, respectively. We also assume that Xe is a product
Ie � Ye with Ie D Œ0; `e�.

The boundary spaces for each edge b D .v; e/ 2 B are Ge;v D L2.Ye;v/ Š
L2.Ye/. Note that Gv D L

e2Ev
Ge;v , i.e., that the vertex coupling at the (original)

vertices v 2 A is also maximal.
Under the typical uniform lower positive bound (11) and a suitable decomposition

of X into Xv and Xe , one can show that k�ak is uniformly bounded. The other
conditions above can also be seen easily.

If we consider again the shrinking parameter and if we assume that X";v is "-ho-
mothetic (see example before Proposition 2.11), then (depending on the energy form
and boundary conditions chosen on X if the external boundary @X is non-trivial),
we can apply Proposition 2.11. Note that the boundary values of the eigenfunction
onXv corresponding to the eigenvalue 0 determine the limit boundary space, i.e., the
vertex coupling appearing below as a proper subspace of Gmax

v .
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Vertex-edge coupling with non-maximal coupling space: trivial vertex abstract

boundary value problems. Let us now construct another vertex-edge coupled
abstract boundary value problem appearing, e.g., in the limit situation of a shrink-
ing graph-like space.

Assume that .…e/e2E allows an edge coupling and that each abstract bounda-
ry value problem …e is bounded. For each v 2 V choose a subspace Gv of Gmax

v

(e.g., given as the boundary values of the eigenfunction corresponding to 0 of a vertex
neighbourhood). For the vertex abstract boundary value problems assume that…v D
.id;Gv; 0;Gv;Gv/, i.e., all…v’s are trivial (see De�nition 2.2).

The corresponding vertex-edge-coupled abstract boundary value problem y… D
.y�;G; Oh; yH1; yH/ is given as follows. The coupling condition in yH1 here reads as
�e;vfe D �v;efv for all e 2 Vv and v 2 V . We de�ne � int

v f WD .�v;efv/e2Ev and
�ext
v f WD .�e;vfe/e2Ev , hence the coupling condition becomes � int

v f D �ext
v f . As

� int
v fv D .�v;efv/e2Ev D �vfv D fv 2 Gv the coupling condition is equivalent

with fv D �ext
v f 2 Gv . Hence we have

yH D
M

e2E
He ˚

M

v2V
Gv; G D

M

v2V
Gv;

yH1 D ¹ f D .fa/a2E �[V 2 yH1;dec j�ext
v f D fv 2 Gv for all v 2 V º

Oh D Ohdec�H1 ; i.e.; Oh.f / D
X

e2E
he.fe/; y�f D .�ext

v f /v2V

(the .�/dec-labelled objects are de�ned as in Section 3.1). Such operators have been
treated in Section 3.4.4 of [15] under the name “extended operator”.

We have the following result, showing that the vertex-edge coupling with trivial
vertex abstract boundary value problems leads just to the edge coupling:

Theorem 3.13. Let G be a discrete graph. Assume that … is an abstract boundary
value problem obtained from a family .…e/e2E of abstract boundary value problems
allowing an edge coupling and choose a closed subspace Gv of Gmax

v D L
e2Ev

Ge;v

for each vertex. As vertex family .…v/v2V we choose the trivial abstract boundary
value problem…v D .id;Gv; 0;Gv;Gv/ for each vertex.

Then the vertex-edge-coupled abstract boundary value problem y… (i.e., vertex-
coupled with respect to the subdivision graph SG) is equivalent (see below) with the
edge-coupled abstract boundary value problem… according to the original graphG.
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Proof. Equivalence of two abstract boundary value problems … and y… means that
there are bicontinuous isomorphisms U 1WH1 ! yH1 and T WG ! yG such that
T � D y�U 1 and Oh.U 1f / D h.f /. Here we have

H D
M

e2E
He; H1 D

°
f 2

M

e2E
H1
e

ˇ̌
ˇ for all v 2 V W �ext

v f 2 Gv

±

and yH1 is given above. Set U 1f D .f; .�ext
v f /v2V / DW .f; �extf / then Oh.U 1f / D

h.f / and

kU 1f k2yH1
D Oh.U 1f /C kf k2H C k�extf k2G
D kf k2

H1 C k�extf k2G
� .1C k�extk/kf k2

H1 ;

while for the inverse .U 1/�1.f; f0/ D f (with f 2 H, f0 2 G) we have the estimate
k.U 1/�1.f; f0/k2H1 D kf k2

H1 � k.f; f0/k2yH1
. Moreover, we set T ' D ', then

T �f D �f D y�.U 1f /.
The previous result allows us to consider convergence of vertex-edge coupled ab-

stract boundary value problems component-wise, even if the limit problem is only
edge-coupled. A typical example is the convergence of the Laplacian on a thin "-
neighbourhood of a metric graph, to a Laplacian on the metric graph. We discuss the
general convergence scheme in the next section.

4 Convergence of abstract graph-like spaces

In this section we show how one can translate convergence of building blocks into
a global convergence, expressed via the coupling of abstract graph-like spaces in
Section 3 and the concept of quasi-unitary equivalence resp. quasi-isomorphy for
abstract boundary value problems acting in different Hilbert spaces in Section 2.3.

Fix a graphG D .V; E; @/ and let… and y… be two vertex-coupled abstract boun-
dary value problems arising from the building blocks …v and y…v . As we have seen
in Section 3.5, the vertex coupling comprises also the vertex-edge coupled and even
some edge-coupled cases.

We want to show the following: Assume that all building blocks …v and y…v are
quasi-isomorphic then the coupled Neumann forms h and Oh of the vertex-coupled
abstract boundary value problems… and y… are quasi-unitarily equivalent, as well as
the coupled boundary operators � and y� are quasi-isomorphic. We will not treat the
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full (natural) problem of the quasi-isomorphy of… and y… here, as we will not show
that the boundary identi�cation operators I , I 0 are quasi-isomomorphic (this would
mean to impose additional assumptions).

One problem with the coupling is that the naively de�ned identi�cation operator
acts as

J 1;dec WD
M

v2V
J 1v WH1;dec D

M

v2V
H1
v �! yH1;dec D

M

v2V
yH1
v

but it is a priori not true that J 1;dec.H1/ � yH1, i.e., that J 1;dec respects the coupling
condition along the different vertex building blocks as in Section 3.2. In order to
correct this, we need the following de�nition (for the existence of such operators, see
the propositions after our next theorem):

De�nition 4.1. Let… be a vertex-coupled abstract boundary value problem arising
from the vertex building blocks .…v/v2V . We say that… allows a smoothing operator
if there is a bounded operator B WH1;dec ! H1;dec such that f � Bf 2 H1 for all
f 2 H1;dec.

A simpler version of the following result can also be found in Section 4.8 of [15]:

Theorem 4.2. Let G D .V; E; @/ be a discrete graph and .…v/v , . y…v/v two fam-
ilies of abstract boundary value problems allowing a vertex coupling. Assume that
…v and y…v are ıv-quasi-isomorphic for each v 2 V . Moreover, assume that ı WD
supv2V ıv < 1 and that the vertex-coupled abstract boundary value problems …

and y… allow smoothing operators B and yB such that

k yBJ 1;decf k yH1;dec � ıkf kH1;dec and kBJ 01;decukH1;dec � ıkuk yH1;dec (15)

for f 2 H1 and u 2 yH1. Then h and Oh are ı0-quasi-unitarily equivalent; and � and
y� are ı0-close where ı0 D O.ı/.

Proof. We de�ne J 1WH1 ! yH1, J 1 WD .id yH1 � yB/J 1;dec. From the smoothing

property, we have J 1f 2 yH1 for any f 2 H1;dec, hence J 1 maps into the right
space. Similarly, we de�ne J 01 WD .idH1 �B/J 01;dec. The identi�cation operators
on H and yH are given as J WD L

v2V Jv and J 0 WD L
v2V J 0

v . Then we have

kJf � J 1f k2yH � 2
X

v2V
kJvfv � J 1v fvk2yHv

C 2k yBJ 1;decf k2yH1;dec
� 4ı2kf k2

H1
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using our assumptions. A similar property holds for J 0 and J 01. The other properties
of De�nition 2.7 for J and J 0 follow directly from the ones of Jv and J 0

v (as in
Section 4.8 of [15]). For the ı-closeness of h and Oh we have

jOh.J 1f; u/ � h.f; J 01u/j2 � 3
�X

v2V
j�hv.J 1v fv; uv/ � hv.fv; J

01
v uv/j

�2

C 3
ˇ̌Oh. yBJ 1;decf; u/ˇ̌2 C 3

ˇ̌
h.f; BJ 01;decu/

ˇ̌2

� 9ı2kf k2
H1kuk2yH1

using again (15). For the boundary identi�cation operators we set I WG ! yG where
.I'/e D 1=2

P
vD@˙e y�v;eIv��

v;e'e and similarly for I 0. Then, we have the following
estimates for the closeness of the boundary maps

k.I� � y�J 1/f k2yG D
X

e2E
k..I� � y�J 1/f /ek2yGe

�
X

e2E

X

vD@˙e

1

2
ky�v;e.Iv�vfv � .y�J 1f /v/k2yGe

� 1

2

X

v2V
kO�v.Iv�vfv � .y�J 1f /v/k2yGmax

v

�
X

v2V
k.Iv�v � y�J 1v /fvk2yGv

C sup
v

ky�vk2k yBJ 1;decf k2yH1

� ı2.1C sup
v

ky�vk2/kf k2
H1 :

by our assumptions. Similarly, we show the related property for I 0 y� � �J 01.
ı0 D ımax¹3; supv k�vk C 1; supv ky�vk C 1º will do the job.
Let us now prove the existence of smoothing operators:

Proposition 4.3. Assume that there are operators �e;vWG1=2
e ! H1

v such that

�v;e�e;v'e D 'e; �v;e�e0;v'e0 D 0; e; e0 2 Ev ; e ¤ e0; v 2 V:

Assume in addition that C 2 D supv
P
e2Ev

k�v;ek2
G

1=2
e !H1

v

< 1 then

.Bf /v WD 1

2

X

e2Ev

�e;v.�v;efv � �ve ;efve /

de�nes a smoothing operator.
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Proof. We have to show that f � Bf 2 H1 whenever f 2 H1;dec, but this follows
immediately from the fact that �v;e.f �Bf / D 1=2

P
wD@˙e

�w;efw is independent

of v D @˙e. The boundedness of B WH1;dec ! H1;dec follows easily.

One can, e.g., choose �e;v D Sv�
�
v;e under suitable assumptions on the maps

�v;e (e.g., ��
v;e.G

1=2
e / � G

1=2
v ), where Sv is the Dirichlet solution operator of …v.

The necessary assumptions are typically ful�lled in our graph-like manifold example;
in particular, if the boundary components Ye, e 2 Ev , do not touch in @Xv , see
Example 3.2.

Finally, we show the norm bound (15) of the smoothing operators under a slightly
stronger assumption than the ı-closeness of � and y� (see De�nition 2.6):

Proposition 4.4. Assume that a smoothing operator yB W yH1;dec ! yH1;dec as in Propo-
sition 4.3 exists and that there is ı > 0 such that

X

e2Ev

ky�v;e.y�vJ 1v � Iv�v/fvk2yG1=2
e

� ı2kfvk2
H1

v

holds for all v 2 V and fv 2 H1
v . Then k yBJ 1;decf k yH1;dec � ıCkf kH1 holds for

all f 2 H1.

Proof. We have

k yBJ 1;decf k2yH1;dec
D
X

v2V


1

2

X

e2Ev

y�e;v.y�v;eJ 1v fv � y�ve ;eJ
1
ve
fve/


2

yH1
v

D 1

4

X

v2V


X

e2Ev

y�e;v..y�v;eJ 1v � y�v;eIv�v;e/fv

C .y�ve;eIve�ve ;e � y�ve ;eJ
1
ve
/fve/


2

yH1
v

� C 2
X

v2V

X

e2Ev

ky�v;el.y�vJ 1v � Iv�v;e/fvk2yG1=2
e

� C 2ı2kf k2
H1

where we used that �v;efv D �ve ;efve for the second equality.

A careful observer might know that the following quote is not a rude reminder of
the discomfort of aging, but just a quote from Pavel’s web page…

Epilogue.
”
Hlídejte si ty vzácné okamžiky, kdy vám to ještě myslí. Mohou být

poslední…“
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A Cayley–Hamiltonian theorem

for periodic �nite band matrices

Barry Simon

I hope Pavel Exner will enjoy this birthday bouquet.

1 Introduction – The magic formula

Let J be a doubly in�nite, self-adjoint, tridiagonal Jacobi matrix (i.e., Jjk D 0 if
jj � kj > 1 and JjjC1 > 0) that is periodic, i.e., if

.Su/j D ujC1; (1)

then for some n 2 ZC, SnJ D JSn. There is a huge literature on this subject – see
Simon [7], Chapter 5.

.J � E/u D 0 is a second order difference equation, so there is a linear map
T .E/ W C2 ! C2 so that if u0; u1 are given, then T .E/

�
u0
u1

� D � un
unC1

�
for the

solution of .J � E/u D 0. �.E/ D Tr.M.E// is called the discriminant of J .
We note that det.T .E// D 1 so T .E/ has eigenvalues � and ��1 and �.E/ D
�C��1. If�.E/ 2 .�2; 2/, then � D ei� for some � in ˙.0; �/ and then Ju D Eu

has Floquet solutions, u˙ obeying u˙
jCnk D e˙ik�u˙

j . These are bounded and these

are only bounded solutions if �.E/ 2 Œ�2; 2�. Thus spec.J / D ��1.Œ�2; 2�/. One
often writes this relation as

�.E/ D 2 cos.�/: (2)

In [2], Damanik, Killip and Simon emphasized and exploited the operator form
of (2), namely

�.J / D Sn C S�n: (3)

This follows from (2) and the view of J as a direct integral. More importantly, what
they called the “magic formula”, [2] shows that a two sided, not a priori periodic,
Jacobi matrix, which obeys (3), is periodic and in the isospectral torus of J .
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A Laurent matrix is a �nite band doubly in�nite matrix that is constant along
diagonals, so a polynomial in S and S�1. Sn C S�n is an example of such a matrix.
The current paper had its genesis in a question asked me by Jonathan Breuer and
Maurice Duits. They asked if K is �nite band and periodic but not tridiagonal if
there is a polynomial Q so that Q.K/ is a Laurent matrix. They guessed that Q
might be connected to the trace of a transfer matrix.

While I don’t have a formal example where I can prove there is no such Q,
I have found a related result which strongly suggests that, in general, the answer is no.
I found an object which replaces � for more general K which is width 2m C 1

(i.e., Kjk D 0 if jj � kj > m), self-adjoint and non-degenerate in the sense that for
all j , KjjCm ¤ 0. Namely we prove the existence of a polynomial, p.x; y/, in x
and y of degree 2m in y, so that p.K; Sn/ D 0. In the Jacobi case,

p.x; y/ D y2 � y�.x/C 1

so that p.J; Sn/ D 0 is equivalent to (3).
We prove this theorem and begin the exploration of this object in Section 1. That a

scalar polynomial vanishes when the variable is replaced by an operator is the essence
of the Cayley–Hamiltonian theorem which says that a matrix obeys its secular equa-
tion. This was proven in 1853 by Hamilton [4] for the two special cases of three-
dimensional rotations and for multiplication by quaternions and stated in general by
Cayley [1] in 1858 who proved it only for 2� 2 matrices although he said he’d done
the calculation for 3 � 3 matrices. In 1878, Frobenius [3] proved the general result
and attributed it to Cayley. We regard our main result, Theorem 2.1, as a form of the
Cayley–Hamiltonian Theorem.

The magic formula had important precursors in two interesting papers of Naı̆man,
namely [5] and [6]. These papers are also connected to our work here.

It is a pleasure to present this paper to Pavel Exner for his 70th birthday. I have
long enjoyed his contributions to areas of common interest. I recall with fondness
the visit he arranged for me in Prague. He was a model organizer of an ICMP.
And he is an all around sweet guy. Happy birthday, Pavel.

2 Main result

By a width 2mC1matrix,m 2 ¹1; 2; : : : º, wemean a doubly in�nite matrix,K, with
Kjk D 0 if jj � kj > m. If sup jKjkj < 1,K de�nes a bounded operator on `2.Z/
which we also denote byK. We say thatK is non-degenerate ifKjj˙m ¤ 0 for all j .
K is periodic (with period n) if SnK D KSn, where S is the unitary operator given
by (1).
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We consider width 2m C 1, non-degenerate, period-n self-adjoint matrices.
In that case, for any E, because K is non-degenerate, Ku D Eu, as a �nite dif-
ference equation, has a unique solution for each choice of ¹uj º2m�1

jD0 . T .E/ will be

de�ned as the map from ¹uj º2m�1
jD0 to ¹uj ºnC2m�1

jDn – it is a 2m�2m, degree nmatrix.

If T .E/u D �u for � 2 C, Ku D Eu has a Floquet solution with uknCj D �kuj .
If T .E/ is diagonalizable, the set of Floquet solutions is a basis for all solutions of
Ku D Eu. If T .E/ has Jordan anomalies (see [8] for background on linear algebra),
there is a basis of modi�ed Floquet solutions with some polynomial growth on top
of the exponential �k .

The values of � are determined by

p.E; �/ D det.�1 � T .E//:
Since

det.�1 � T .E// D �2m det.1 � ��1T .E//

D �2m
� 2mX

jD0
.��/j Tr

� j^
.T .E//

��

D
2mX

jD0
�jpj .E/;

(4)

where
Vj is given by multilinear algebra (Section 1.3 of [8]) with

V0
.T .E// D 1

on C so its trace is 1. Thus in (4),

p2m.E/ D 1; pj .E/ D .�1/j Tr
� 2m�j^

.T .E//
�

(5)

and pj is of degree at most .2m� j /n in E.
Since Sn andK are commuting bounded normal operators, they have a joint spec-

tral resolution which is supported precisely on the solutions of p.E; �/ D 0 with
j�j D 1 because it is well known that the spectrum is precisely the set of energies
with polynomially bounded solutions. By the spectral theorem (equivalently, a direct
integral analysis), we thus have the main result of this note:

Theorem 2.1. Let K be a self-adjoint, non-degenerate, width 2m C 1, period n
matrix. Then for p given by (4) / (5), we have that

p.K; Sn/ D 0: (6)

We end with a number of comments.
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(1) We used the self-adjointness ofK to be able to exploit the spectral theorem. But
just as the Cayley–Hamilton Theorem for �nite matrices holds in the non-self-
adjoint case, it seems likely that Theorem2.1 is valid for general non-degenerate,
periodic K, even if not self-adjoint.

(2) Since Kjj�m ¤ 0, the transfer matrix, T .E/ is invertible and thus det.T .E//
has no zeros. Since it is a polynomial, it must be constant, that is p0.E/ is a
constant. It is thus of much smaller degree than the bound, 2mn, obtained by
counting powers of E.

(3) In many cases of interest, T .E/will be symplectic, i.e., there exists an antisym-
metricQ on C2m withQ2 D �1 so that T .E/tQT.E/ D Q. Such a T .E/ has
T .E/�1 and T .E/t similar, so the eigenvalues ¹�j º2mjD1 can be ordered so that
�2mC1�j D ��1

j ; j D 1; : : : ; m. It follows that det.T .E// D 1 but even more,
we have that

Tr
� k̂

.T .E//
�

D
X

j1<���<jk

�j1
: : : �jk

D
X

j1<���<j2m�k

��1
j1
: : : ��1

j2m�k
(7)

D
X

j1<���<j2m�k

�j1
: : : �j2m�k

(8)

D Tr
� 2m�k^

.T .E//
�

andp2m�k.E/ D pk.E/. In the above, (7) follows from the fact that the product
of all the �’s is 1, and we can sum over the complements of all k-sets. (8) then
uses the fact that �2mC1�j D ��1

j ; j D 1; : : : ; m.

(4) One can askwhether there is amagic formula in this case, i.e., doesp. zK;Sn/D0

imply that zK is periodic and isospectral toK. There is already one subtlety one
faces at the start. If zK is not supposed a priori n-periodic, then Snjpj . zK/ may
not equal pj . zK/Snj so there is a question of what p. zK; Sn/ D 0 means. Even
if one supposes that zKSn D Sn zK, p. zK; Sn/ D 0 and the spectral theorem
only implies that spec. zK/ � spec.K/, so there is more to be proven. Indeed,
the isospectral set in this case remains to be explored.

(5) It seems unlikely that there is another independent relation besides (6) between
a polynomial inK and Laurent polynomial in S . In general one cannot hope that
p.K; Sn/ D 0 yields a polynomial in one variable so that Q.K/ is a Laurent
polynomial in Sn but it remains to �nd an explicit example where one can prove
that the Breuer–Duits question has a negative answer.
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There are lots of interesting open questions connected to our main result, Theo-
rem 2.1.

Acknowledgement. Research supported in part by NSF grant DMS-1265592 and
in part by Israeli BSF Grant No. 2014337.
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Path topology dependence of adiabatic time evolution

Atushi Tanaka and Taksu Cheon

To Pavel Exner, our friend and mentor

1 Introduction

The adiabatic theorem for isolated quantum systems is a basic principle of the quan-
tum dynamics: Once a system is prepared to be in a stationary state, the system re-
mains to be stationary as long as the parameters of the system are varied slow enough.
There are many proofs for slowly driven systems (see [4], [17], and [2]), which are
described by Hermitian Hamiltonian, as well as slowly modulated driven systems
(see [35], [13], and [27]), which are described by unitary Floquet operators. The
adiabatic theorem has diverse applications, e.g., in molecular science and solid state
physics (see [6] and [5]), quantum holonomy (see [25], [3], and [11]) and adiabatic
quantum computation (see [15], [14], and [32]).

In this article, we examine how the �nal stationary state of the adiabatic time
evolution depends on the path in the adiabatic parameter space. In particular, we
here focus on the eigenspaces corresponding to the initial and �nal stationary states,
and we will ignore the phase information in the following. First, we will show that
the �nal stationary state generally depends on the adiabatic path, although the initial
adiabatic parameter and initial stationary state are kept �xed. It turns out that the
topology of the adiabatic path plays the key role there. Second, we will show that
the discrepancy between two �nal stationary states corresponding to two different
adiabatic path is characterized by a permutation matrix, which is governed by a ho-
motopy equivalence. Our idea is an application of the topological formulation for the
exotic quantum holonomy (see [7] and [31]), which concerns the nontrivial change
in eigenspaces induced by adiabatic cycles (see [28]).

The present argument heavily relies on topology, in particular the concept of ho-
motopy and its application to the covering map. At the same time, our argument is
formal in the sense of mathematics. Since our argument relies only on an elemental
account of homotopy and covering map, we refer to textbooks of topology for more
mathematical description (see [18], [16], and [22]). The covering map is also dis-
cussed in a study of phase holonomy of non-Hermitian quantum systems (see [19]).
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The plan of this article is the following. In Section 2, we introduce the lifting of
adiabatic paths for our problem. This is considered to be an extension of the lifting for
the phase holonomy, see [26] and [1]. In Section 3, we present the main results. An
example is shown in Section 4. We summarize the results of this article in Section 5.

2 Lifting adiabatic paths

The lifting of adiabatic paths is the central concept for the theory of conventional
quantum holonomy, see [25], [3], and [11]. We take over this concept to examine
the path-dependence of eigenspaces. In this sense, our approach is a straightforward
extension of the works by Simon [26] and Aharonov and Anandan [1].

We here focus on the simplest case where the system is described by a N -level
Hermitian HamiltonianH.�/ with an adiabatic parameter �, whose space is denoted
asM. The energy spectrum ofH.�/ is assumed to be discrete and non-degenerate for
an arbitrary � inM. LetPn.�/ be the eigenprojector corresponding to an eigenenergy
En.�/ (n D 0; 1; : : : ; N � 1). Our assumption on the eigenenergies ensures that
En.�/ and Pn.�/ are smooth in M. Also, Pn.�/ is rank-one. We remark that it is
straightforward to extend the following analysis to unitary Floquet systems, if the
spectrum of the Floquet operator is discrete and non-degenerate.

We examine all eigenprojectors at a time, which facilitates to compare the changes
in eigenspaces induced by two adiabatic paths. From the eigenprojectors Pn.�/ for
a given point � in M, we introduce an ordered set of the eigenprojectors

p.�/ � .P0.�/; P1.�/; : : : ; PN�1.�// : (1)

We may introduce another ordered sets, since the order is arbitrary. Let � denote a
permutation of quantum numbers 0; 1; : : : ; N � 1. In other words, � is an element of
N -th symmetric group SN . Let p� .�/ D � .p.�//, i.e.,

p� .�/ � .P�.0/.�/; P�.1/.�/; : : : ; P�.N�1/.�//;

where �.n/ is the permutated quantum number for a given quantum number n.
We introduce a �ber at � in M:

F� �
[

�2SN

¹p� .�/º : (2)

For an arbitrary pair of elements, say p� 0.�/ and p� 00.�/, of F�, there is a unique
permutation � 2 SN that satis�es p� 00.�/ D � .p� 0.�//, i.e., � 00.n/ D �.� 0.n// for
an arbitrary n. In this sense, we call SN a structural group of the �ber F�.
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A total space P consists of the �bers F� inM:

P �
[

�2M
F�; (3)

which naturally accompanies a projection

� WP �! M (4)

by construction. Hence we obtain a �ber bundle consists of the total space P, the
projection � , the base manifold M and the �ber F�.

Utilizing the �ber bundle introduced above, we introduce a lifting of a path C in
M to P in order to examine the adiabatic time evolution of p along C . Let �i and �f
denote the initial and �nal points of C , respectively.

The adiabatic time evolution of p 2 P can be determined by the time evolution
of each eigenprojector Pn. The adiabatic theorem ensures that the �nal state of the
adiabatic time evolution along C is unique for a given initial stationary state Pn.�i/.
Accordingly the initial pi 2 F�i and the adiabatic path C uniquely determines the
�nal point pf 2 F�f . The corresponding trajectory of p is called the lifted path zC:
Let �

C
from F�i to F�f denote the mapping from the initial to the �nal point, i.e.,

pf D �
C
.pi/: (5)

Namely, the mapping �
C
describes the change of p induced by the adiabatic path C

(Figure 1).

Fi Ff

p
�
C
.p/

�i �fC

zC

Figure 1. Lifting adiabatic path C in M to P (eq. (3)), which is made of �bers F�
(eq. (2)). Let �i and �f denote the initial and �nal points of C , respectively. The
lifted path zC starts from p, which is in the initial �ber Fi, and satis�es the adia-
batic Schrödinger equation for the ordered set of eigenprojectors. We introduce the
mapping �

C
from Fi to the �nal �ber Ff , so that �C .p/ is the �nal point of

zC .
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The projection � introduced in eq. (4) satis�es the axiom of covering projec-
tions [18]. Namely, for a given point � in M, there is an open subset U of M that
satis�es the following: ��1.U / is a disjoint union of connected open subset of P.
Each of the disjoint component Uj is mapped homeomorphically onto U (Figure 2).

F�

U

U1

U2

�

p1

p2

Figure 2. A schematic picture of the covering map � W P ! M (eq. (4)). Let � be a
point in an open set U � M. Points pj in the �ber F� (eq. (2)) satis�es �.pj / D �.
When � is a covering map, ��1.U / consists of disjoint union of open sets Uj , each
of which is mapped homeomorphically onto U .

The covering map structure determines a various properties of �
C
. In particular,

it will be shown below that the homotopic classi�cation of the paths plays the central
role here.

If C is a closed path with a given initial point �i, the mapping �
C
on F�i is called

the monodromy action (Theorem 11.22 in [18]). We also note that �
C
can be regarded

as a permutation of eigenprojector at � D �i. Since our argument in the next section
much owes to the properties of the monodromy action (e.g., shown in [18]), we will
quote the relevant result where appropriate.

3 Comparison of adiabatic paths

We lay out our main results in this section. We compare two adiabatic paths C1
and C2, which have the same initial and �nal points �i and �f, in the adiabatic pa-
rameter space M. For a given initial eigenprojector at �i, we will elucidate how the
eigenprojectors at �f depends on C1 and C2, by examining the adiabatic time evolu-
tions of the ordered set of eigenprojectors (eq. (1)). In other words, we examine how
�
C
, which is a mapping from F�i to F�f , depends on the topology of the path.
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First of all, we examine the case that C1 is homotopic to C2, which is denoted as
C1 � C2. Namely, we suppose that we may smoothly deform C1 to C2, while keep-
ing its initial and �nal points. We remark that this is the case where most conventional
analyses of the periodic adiabatic time evolution have focused on.

IfC1 andC2 are homotopic, �C1
and�C2

are identical, due to the homotopy lifting
property (e.g., Theorem 11.13 in [18]). Hence, an arbitrary initial eigenprojector is
adiabatically transported to the same �nal point through the paths C1 and C2.

Utilizing this result, �
C
may be denoted as �ŒC �, where ŒC � denotes the equiva-

lence class of a path C under the homotopic classi�cation.
Secondly, we proceed to the case where C1 is not homotopic to C2. We compare

these paths with a closed path C � C1 � .C2/�1, where the inverse path of C2 follows
after C1. Hence the initial point of C is �i. If a closed path  , whose initial point is
�i, inM is homotopic to C , the following formula for �ŒC � holds:

�
�ŒC2�

��1 ı �ŒC1� D �Œ�; (6)

where ı denotes the composition of the mappings �
C
. Eq. (6) is shown in the fol-

lowing way. Because of C �  , �ŒC � D �Œ� holds. On the other hand, �ŒC � D
.�ŒC2�/

�1 ı �ŒC1� holds from the de�nition of �ŒC1�.C2/�1� (eq. (5)).
Now our problem, i.e., the comparison of adiabatic time evolutions along adia-

batic paths in M, is cast into the analysis of the monodromy action �Œ� for an ar-
bitrary closed path  in M. We remind that �Œ� corresponds to a permutation of
eigenprojectors induced by the adiabatic time evolution along  . For example, if 
is contractable to the point �i, which is equivalent to the case C1 � C2 examined
above, �Œ� corresponds to the identical permutation, which implies �ŒC1� D �ŒC2�.

In order to completely solve our problem, there are two tasks. One is to enumer-
ate all equivalence class Œ� of closed paths in M. Namely, we need to identify the
�rst fundamental group �1.M/ of the adiabatic parameter space M. The other is to
examine the monodromy action �Œ� of eigenspaces, for every Œ� in �1.M/.

There remains a question whether different equivalent classes Œ� and Œ 0� induce
different permutations of eigenspaces. In other words, we need to clarify whether
�1.M/ completely characterizes the collection of �Œ�. There are two cases.

1. If P is simply connected, i.e., �1.P/ has only a single element, �ŒC1� D �ŒC2�

holds if and only if C1 is homotopically equivalent to C2. Hence �1.M/ offers
the complete classi�cation of the adiabatic cycles for our problem.

2. In general, we need to modify the �rst case above, where the equivalence class
of closed paths �1.M/ is replaced with H where H � �1.M/=��.�1.P//.
Namely, �ŒC1� D �ŒC2� holds if and only if C1 is equivalent to C2 under the
equivalence class H of closed paths inM.
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Here we assume that � is a normal covering map, which is equivalent to the condi-
tion that H is independent of pi (Proposition 11.35 in [18]). As far as we see, this
assumption holds in our examples.

These result concern with the groupˆ consists of all possible �Œ� for an arbitrary
closed path  . In the theory of covering map, ˆ is called a covering automorphism
group, and the above result is just the one-to-one correspondence between ˆ andH
(Theorem 12.7 in [18]).

We examine the latter, general case, where P is multiply connected. There is a
closed path zC that is not contractable to a point, in P. We assume that the initial point
pi of zC satis�es �.pi/ D �i. Let C be the projection of zC into M, i.e., C � �. zC/.
We note that an arbitrary lift ofC toP is closed. IfC is not contractable to a point, i.e.,
the equivalence class ŒC � is different from Œe�, this offers an example of �ŒC � D �Œe�
with ŒC � ¤ Œe�. Accordingly such ŒC � makes H nontrivial.

4 Example

We examine a slowly modulated periodically driven systems in this section. Here a
modi�cation of the adiabatic theorem is required for the stationary states that are de-
scribed by eigenvectors of a Floquet operator, see [35], [13], and [27]. We choose the
periodically driven systems instead of slowly driven Hamiltonian systems because
the examples in the latter case requires either the divergence or crossing of eigenen-
ergies, as is seen in the studies of exotic quantum holonomy, see [7], [9], and [10].
We refer to [29] to apply the present formulation for adiabatic paths that involves
level crossings.

We compare an arbitrary pair .C1; C2/ of two adiabatic paths in a two level sys-
tem, where we suppose that the absence of spectral degeneracy in the adiabatic paths.
After we lay out our result using a parameterization that is suitable to examine the
path topology dependence, of two level systems, we will show an example of non-
trivial pair of paths .C1; C2/ using a quantum map.

First, we parameterize the adiabatic path using the set of eigenprojections P1
and P2

b � ¹P1; P2º; (7)

where the order of the projectors are ignored. Namely, we will specify a point in
the base manifold M by b. This amount to the parameterization of adiabatic path by
Floquet operator through the spectral decomposition

U D z1P1 C z2P2; (8)
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where zj is j -th eigenvalue (j D 1; 2), since non-degenerate Floquet operator U
uniquely speci�es b. In contrast, there are two possible values of the ordered projector
p introduced in eq. (1), i.e., .P1; P2/ and .P2; P1/. Note that the de�nition of b in
eq. (7) is straightforward to extend to the systems with an arbitrary number of levels.

Second, we take up a geometric interpretation of b and p for the two level system,
utilizing the following parameterization of projection operator

P.a/ D 1

2
.1C a � � /;

where � is the vector consists of Pauli matrices, and a is a normalized three-dimen-
sional real vector. The eigenprojectors in eq. (8) can be expressed as P1 D P.a/ and
P2 D P.�a/. Now it is straightforward to see that p and a has 1 W 1 correspondence,
which implies that P can be identi�ed with S2. On the other hand, ˙a correspond to
a single point in the b-space. Namely, the b-space can be regarded as RP 2, the real
projective plane. Hence the covering map � WS2 ! RP 2 for the two level system
can be regarded as an identi�cation of the antipodal points in the sphere.

Now our argument presented in the previous section is ready to apply. The fun-
damental class of the base space �1.RP 2/ D ¹Œe�; Œ�º has two elements, where e
is the closed path that is contractable to a point, and the closed path  is not homo-
topic to e. On the other hand, our total space P is simply connected as P D S2.
Hence Œe� and Œ�, the two classes of closed paths, offers two different monodromy
map �Œe� and �Œ�, which correspond to the identity and cyclic permutations of two
eigenprojectors, respectively.

We summarize the analysis of two level systems. When the trails of the adiabatic
paths C1 and C2 in RP 2 are homotopic, the adiabatic time evolutions of an eigen-
projector along C1 and C2 has no difference. On the other hand, when C1 and C2 are
not homotopic, the composite closed path C�1

2 � C1 is homotopic to  , and the cor-
responding discrepancy �Œ� D .�ŒC2�/

�1 ı �ŒC1� (eq. (6)) is expressed by the cyclic
permutation of two items.

We exemplify the above argument using a slowly modulated driven spin-1=2,
where we set „ D 1. In the absence of the modulation, our example is described
by the following periodically driven Hamiltonian:

H.t/ D 1

2
B � � C �

1 � �z
2

1X

mD�1
ı.t �m/;

where B D B.cos�ex C sin �ey/ is the static magnetic �eld con�ned in xy-plane
(B and � are the cylindrical variables), and � is the strength of the periodic term.
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The corresponding Floquet operator is, for example

U D e
�i�.1��z/=2e

�iB ��=2; (9)

which is a quantum map under a rank-1 perturbation, see [12] and [21]. In the fol-
lowing, we examine U under the adiabatic changes of B in .Bx; By/-plane except
the origin B D 0. Also, we set � D � along the adiabatic path. Hence U is single-
valued in .Bx; By/-plane, since U periodically depends on � with the period 2� .
The eigenvalues of U are, as shown in [28],

z˙ D exp¹�i.�˙�/=2º;

where

� D 2 arccos
�
cos

�

2
cos

B

2

�
:

The corresponding eigenprojectors are P.˙a/, where

a D 1

sin.�=2/

h
sin

B

2

�
cos

�

2
e� � sin

�

2
e�

�
� sin

�

2
cos

B

2
ez

i
;

e� D cos�ex C sin �ey and e� D � sin�ex C cos�ey . Note that � and a are not
single-valued in .Bx; By/-plane although U is single-valued. We depict adiabatic
paths, whose initial and �nal points in .Bx; By/-plane are B i � .�; 0/ and Bf �
.��; 0/, respectively, and corresponding adiabatic time evolution of eigenspaces in
Figure 3.

5 Conclusion

We have shown the path topology dependence of adiabatic time evolution in closed
quantum systems through a topological argument, which is based on the recent study
on the exotic quantum holonomy (see [28]). We �nally note that examples of sys-
tems exhibit non-trivial adiabatic path topology dependence, according to the studies
of exotic quantum holonomy in, for example, quantum graphs with generalized con-
nection conditions (see [8], [33], [23], and [24]), many-qubit systems [30], adiabatic
quantum computation [32], and the Lieb–Liniger model [34].

Acknowledgement. This research was supported by the Japan Ministry of Educa-
tion, Culture, Sports, Science and Technology under the Grant number 15K05216.
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C 0
a

Ca

Bf

Bi
O

x

y

Cc

Figure 3. Adiabatic time evolution of a (thick arrow), which is equivalent to the or-
dered set of eigenprojectors p for the periodically driven spin-1=2 (eq. (9)). Since a is
transported from ex to ey along the adiabatic path Ca (thick curve), the correspond-
ing adiabatic evolution of eigenprojector is from P.ex/ to P.ey/. In other words, the
adiabatic mapping of p is �ŒCa� .p.ex// D p.ey/, where p.a/ � .P.a/; P.�a//.
Other adiabatic path C 0

a (dotted curve), which is homotopic to Ca, provides the same
adiabatic mapping, i.e., �ŒCa� D �ŒC 0

a �
. On the other hand, the adiabatic path Cc

(dashed curve) is not homotopic toCa due to an obstacle (a disclination [20] and [22])
at the origin. The corresponding adiabatic evolution is described as �ŒCc�.p.ex// D
p.�ey/. We may compare Ca and Cc by a closed path C D C�1

c � Ca. The dis-
crepancy between �ŒCa� and �ŒCc� is given by �ŒC �, which corresponds to the cyclic
permutation of the two items in p.
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On quantum graph �lters with �at passbands

Ondřej Turek

Dedicated to Pavel Exner on the occasion of his 70th birthday

1 Introduction

Quantummechanics on graphs is a useful tool for the examination of quantummotion
on microscopic wires, lattices and other graph-like nanostructures. The method has
been intensively developed since 1980s with regard to the technological progress
achieved in microfabrication. The development of the subject led to a rich literature
to date; see, e.g., monographs [1] and [7] and references therein. On the other hand,
the discipline remains relatively new and is still rapidly advancing.

Quantum graph models are useful in particular for a design of quantum systems
with prescribed properties. In this paper we focus on scattering problems on systems
consisting of several wires connected together in one point to form a star. When a
particle moving along a wire reaches the vertex, it is scattered to the other wires. The
scattering characteristics depend on the energy of the particle and on the nature of the
potential in the point. Such system is modelled by a star graph with a certain wave
function coupling in the vertex. It is known that a vertex of degree n generally features
n2-parametric family of admissible couplings [8], and the scattering characteristics
considerably vary in dependence on the coupling parameters [2]. Obviously, one can
take advantage of this fact in a design of quantum devices with particular particle
transmission properties. On the other hand, the role of the coupling parameters in the
scattering characteristics is not well understood yet.

The problem studied in this paper concerns a star graph with n edges, some of
which being subject to a constant nonzero potential V . Scattering in such a system
depends i.a. on the strength of the potential. It was noticed in earlier works [11]
and [12] that a certain particular choice of the vertex coupling gives rise to a “�at
band” scattering behaviour. That is, the probability of transmission of a particle from
an edge (we call the edge “input”) to another given edge (called “output”) turned out
to be constant for energies E in the interval .0; V / and quickly descending towards
zero for E > V . Consequently, particles with energies exceeding the controlling
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potential V mostly cannot pass to the output edge. The vertex thus works as a con-
trollable band-pass �lter with a �at passband. In this paper we will deal with the
problem more thoroughly. We will prove that this behaviour can occur only for cer-
tain subfamilies of vertex couplings, but at the same time we will demonstrate that
there exists a multiparametric family of vertex couplings with the “�at passband”
property. In other words, such a behaviour is less rare than it might seem earlier.

The paper is organized as follows. In Section 2 we bring together elementary facts
and notation on vertex couplings and scattering in quantum graph vertices. Section 3
presents the concept of a controllable band-pass �lter and the goals of the paper, as
well as the idea of solution. Sections 4–7 are devoted to the existence of quantum
graph �lters featuring �at passbands. The main result is presented in Section 6, in
which several designs are proposed.

2 Preliminaries

A wave function of a particle con�ned to a star graph having n arms consists of n
components, ‰ D . 1;  2; : : : ;  n/. The coordinate on each arm is chosen such that
0 corresponds to the center of the star graph and the variable grows in the outgoing
direction. If there are potentials V1; : : : ; Vn imposed on the arms, the Hamiltonian
acts as  j 7! � 00

j C Vj j at each arm j D 1; : : : ; n (we choose the units so that
„ D 2m D 1 for m being the mass of the particle).

Properties of the vertex are determined by boundary conditions that are conven-
tionally written in the form

A‰.0/C B‰0.0/ D 0; (1)

where

‰.0/ D

0
B@
 1.0/
:::

 n.0/

1
CA and ‰0.0/ D

0
B@
 0
1.0/
:::

 0
n.0/

1
CA

are the boundary vectors and A;B are complex n � n matrices satisfying

rank.AjB/ D n; AB� D BA�; (2)

cf. [8]. The symbol .AjB/ denotes the n � 2n matrix formed from columns of A
and B .
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In this paper we will take advantage of the so-called ST -form of boundary con-
ditions [3], in which requirements (2) are implicitly satis�ed due to a special choice
of A and B . Namely, the ST -form relies on the block decomposition of A and B ,

�
I .r/ T

0 0

�
‰0.0/ D

�
S 0

�T � I .n�r/
�
‰.0/ (3)

for a certain r 2 ¹0; 1; : : : ; nº. Matrix T is a general complex r � .n� r/matrix, S is
a Hermitian matrix of order r , and I .r/; I .n�r/ are identity matrices of given orders.
The value r corresponds to rank.B/ in boundary conditions (1).

If a wave corresponding to a quantum particle with energy E reaches the vertex
from the `-th line with amplitude 1, the wave is re�ected with a complex amplitude
Sjj .E/ and transmitted to the lines nos. ` ¤ j with complex amplitudes Sj`.E/. The
scattering amplitudes form the scattering matrix of the vertex. The scattering matrix,
denoted by S.E/, is an n � n matrix function of particle energy that is given by the
formula

S.E/ D �.AC i
p
EB/�1.A � i

p
EB/: (4)

Let us emphasize that formula (4) applies only if Vj D 0 for all j D 1; 2; : : : ; n.
If we substitute

A D �
�
S 0

�T � I .n�r/
�

and B D
�
I .r/ T

0 0

�

into equation (3), we obtain the scattering matrix expressed in terms of the ST -form
of boundary conditions,

S.E/ D �I .n/ C 2

�
I .r/

T �
��
I .r/ C T T � � 1

i
p
E
S
��1

.I .r/ T /I (5)

cf. [4]. It is straightforward to see from formula (5) that the scattering matrix is
constant with respect to E if and only if the matrix S in the ST -form of boundary
conditions (3) vanishes, i.e., when

�
I .r/ T

0 0

�
‰0.0/ D

�
0 0

�T � I .n�r/
�
‰.0/:

Vertex couplings having energy-independent scattering matrices are called scale in-
variant couplings. They are widely studied; see [6], [9], [10], and [5].

3 A potential-controlled �lter

Consider a quantum star graph with n edges. We will regard one of the edges as
input, another edge as output. The remaining n � 2 edges will be assumed to be of
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two types (see Figure 1):

• lines with constant nonzero potentials (“controlling lines”);

• lines without potentials (“drains”).

controlling lines

drains

input output

Figure 1. A controllable quantum graph �lter

For a particle coming in the vertex along the input line with energy E, we denote the
complex transmission amplitude to the output line by the symbol T.E/. The corre-
sponding transmission probability in the channel is P.E/ D jT.E/j2. This paper is
concerned with the relation between the transmission probability in the input-output
channel and the potentials on the controlling lines. More speci�cally, we will search
for couplings that can serve as controllable band-pass �lters with �at passbands. That
is, the function P.E/ is required to have the following three properties, cf. Figure 2:

P.E/ D const > 0 for E 2 .0; V / for a certain V > 0; (6)

P.E/ quickly decreases when E exceeds V , i.e., lim
E&V

P0.E/ D �1; (7)

lim
E!1

P.E/ D 0: (8)

We assume that V is the value of the constant potential on the controlling lines.
In general, the transmission amplitude in the input-output channel is given by

the term ŒS.E/�oi of the scattering matrix. However, formula (4) cannot be ap-
plied straightforwardly, because the controlling lines are subject to constant potentials
Vj ¤ 0. Therefore, we will approach the problem as follows. At �rst we transform
the original boundary conditions in the vertex of degree n to boundary conditions in a
vertex of degree 2. This step is based on the idea that the controlling lines and drains
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Figure 2. An example of sought transmission probability

support only outgoing waves, thus the corresponding wave function components are
multiples of eikj x , where

kj D
8
<
:

p
E � Vj ; if E > Vj ;

i
p
Vj �E; if E < Vj ;

(9)

is the momentum on the j -th line with potential Vj . Relation  j .x/ / eikj x implies

 0
j .0/ D ikj j .0/ for all j ¤ i; j ¤ o: (10)

Equation (10) allows us to eliminate the boundary values  j .0/ and  0
j .0/ at all con-

trolling edges and drains from boundary conditions (3). We obtain boundary condi-
tions in a vertex of degree 2 that connect just the input and the output,

Adiss‰io C Bdiss‰
0
io D 0; (11)

where

‰io D
�
 i .0/

 o.0/

�
; ‰0

io D
�
 0
i .0/

 0
o.0/

�
; (12)

are boundary values at input and output line. We emphasize that Adiss; Bdiss are 2� 2
matrices that generally do not obey the requirements (2), because AB� D BA� can
be broken due to the dissipation in the vertex, manifested through “hidden” drains
and controllers. On the other hand, since neither input line nor the output line sup-
port a potential, formula (4) applies without reserve. Once we substitute matrices
Adiss; Bdiss from reduced boundary conditions (11) into equation (4), we obtain the
2� 2 scattering matrix that characterizes wave propagation in the input-output chan-
nel. In particular, the .2; 1/-term of the matrix is the sought transmission amplitude
T.E/.



548 O. Turek

For the derivation of matrices Adiss; Bdiss, we will take advantage of the ST -form
of boundary conditions. Therefore, the calculation depends on the parameter r . In
the following section we begin with the case r D 1.

4 Case r D 1

The ST -form (3) of boundary conditions for r D 1 uses matrices T D .t2 t3 � � � tn/
and S D .s/. Wemay assume without loss of generality that line no. 1 is the input and
line no. 2 is the output. Let us follow the steps outlined in Section 3. After eliminating
 3.0/; : : : ;  n.0/ from the system using identities (10), we get dissipative boundary
conditions (11) with

Adiss D �

0
B@
s � i

nX

jD3
kj jtj j2 0

�t2 1

1
CA ; Bdiss D

�
1 t2
0 0

�
:

When we substitute Adiss; Bdiss into formula (4), we obtain the scattering matrix de-
scribing the input-output interface,

Sdiss.E/ D �I C 2

1C jt2j2 � s

i
p
E

C
nX

jD3

kjp
E

jtj j2

�
1 t2
t2 jt2j2

�
:

The transmission amplitude is given as the term ŒSdiss.E/�21, i.e.,

T.E/ D 2t2

1C jt2j2 � s

i
p
E

C
nX

jD3

kjp
E

jtj j2
: (13)

Now we are ready to check whether S and T can be chosen such that the func-
tion P.E/ D jT.E/j2 satis�es conditions (6)–(8). Condition (8) is equivalent to
limE!1 T.E/ D 0. Equation (9) implies limE!1 kj=

p
E D 1 for all j D 3; : : : ; n;

hence

lim
E!1

T.E/ D 2t2

1C jt2j2 C
nX

jD3
jtj j2

:
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Consequently

lim
E!1

T.E/ D 0 () t2 D 0:

However, the choice t2 D 0 implies T.E/ D 0 for all E > 0 (cf. (13)), which
contradicts condition (6). (In physical terms, t2 D 0 corresponds to a vertex with line
no. 2 completely decoupled.) To sum up, conditions (8) and (6) cannot be satis�ed
at the same time. We conclude that a band-pass �lter with �at passband cannot be
constructed using a vertex coupling with r D 1.

5 Case r � 2 with linear dependence

Now we consider boundary conditions (1) with r D rank.B/ � 2 such that the
columns of B corresponding to the input and output are linearly dependent. We can
assume without loss of generality that the input corresponds to line no. 1 and the
output is line no. n. When the boundary conditions are written in the ST -form, the
linear dependence implies that the last column of T is a transposition of the vector
.t; 0; : : : ; 0/ for a certain t ¤ 0. Therefore, the ST -form of boundary conditions
reads as follows,

0
BB@

1 0 T1 t

0 I .r�1/ T2 0

0 0 0 0

0 0 0 0

1
CCA

0
B@
 0
i

‰0
cd

 0
o

1
CA D

0
BB@

s S2 0 0

S�
2 S4 0 0

�T �
1 �T �

2 I .n�r�1/ 0

�Nt 0 0 1

1
CCA

0
B@
 i

‰cd

 o

1
CA ; (14)

where I .r�1/; I .n�r�1/ are identity matrices of given orders and T D �
T1 t
T2 0

�
,

S D � s S2

S�
2 S4

�
. Recall that symbols  i ;  0

i and  o;  
0
o denote boundary values at

the input and output line, respectively. Symbols

‰cd D

0
B@
 2.0/
:::

 n�1.0/

1
CA I ‰0

cd D

0
B@
 0
2.0/
:::

 0
n�1.0/

1
CA

stand for boundary vectors at controlling edges and drains.
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Values  j .0/;  0
j .0/ obey relations (10), i.e.,

‰0
cd D i

�
K2 0

0 K3

�
‰cd (15)

for K2 D diag.k2; : : : ; kr/ and K3 D diag.krC1; : : : ; kn�1/. We use identity (15)
to eliminate ‰cd and ‰0

cd from system (14). In this way we obtain boundary condi-
tions (11) with

Adiss D �
�
f 0

�Nt 1

�
; Bdiss D

�
1 t

0 0

�
; (16)

where

f D s � iT1K3T
�
1 C .S2 � iT1K3T

�
2 /.iK2 C iT2K3T

�
2 � S4/�1.S�

2 � iT2K3T
�
1 /:

The dissipative scattering matrix corresponding to matrices (16) is

Sdiss.E/ D �I C 2

1C jt j2 � f

i
p
E

�
1 t
Nt jt j2

�
:

The transmission amplitude thus equals

T.E/ D 2Nt
1C jt j2 � f

i
p
E

:

Now we check condition (8). Since

lim
E!1

1p
E
K2 D I .r�1/ and lim

E!1
1p
E
K3 D I .n�r�1/;

we have

lim
E!1

�f
i
p
E

D T1T
�
1 � T1T �

2 .I C T2T
�
2 /

�1T2T �
1 D T1.I C T �

2 T2/
�1T �

1 :

Hence

lim
E!1

T.E/ D 2Nt
1C jt j2 C T1.I C T �

2 T2/
�1T �

1

:

Note that T1.I C T �
2 T2/

�1T �
1 is a non-negative number for any choice of T1; T2.

Therefore, condition (8) is equivalent to t D 0. However, it is easy to see from
boundary conditions (14) that t D 0 corresponds to a completely decoupled output,
which implies T.E/ D 0 for all E > 0. In other words, conditions (8) and (6) are
contradictory. We conclude that a vertex coupling cannot serve for the construction
of a band-pass �lter with �at passband if the columns ofB corresponding to the input
and output edge are linearly dependent.
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6 Case r D 2

This section is focused on the case r D 2, i.e., rank.B/ D 2. With regard to the
result of Section 5, we may assume that the columns of matrix B that correspond
to the input and output line are linearly independent. Without loss of generality, we
associate the input and output with lines no. 1 and no. 2, respectively. The boundary
conditions in the vertex are expressed in the ST -form as follows,

�
I .2/ T

0 0

��
‰0
io

‰0
cd

�
D
�
S 0

�T � I .n�2/
��

‰io
‰cd

�
; (17)

where S is a Hermitian 2�2matrix, T 2 C2;n�2, I .2/; I .n�2/ are identity matrices of
appropriate sizes,‰io; ‰0

io are the boundary values at input and output line (cf. (12)),
and

‰cd D

0
B@
 rC1.0/

:::

 n.0/

1
CA ; ‰0

cd D

0
B@
 0
rC1.0/
:::

 0
n.0/

1
CA :

are the boundary values at controllers and drains. Relations (9) imply

‰0
cd D iK‰cd; (18)

where
K D diag.k3; : : : ; kn/:

Identity (18) allows to eliminate ‰cd and‰0
cd from system (17). We arrive at dissipa-

tive boundary conditions connecting just the input and output,

‰0
io D .S � iTKT �/‰io:

Formula (4) applied on Adiss D �.S � iTKT �/ and Bdiss D I leads to the scattering
matrix

Sdiss.E/ D �I C 2

1C Tr.M.E//C det.M.E//
adj.M.E//

for

M.E/ D TDT � � 1

i
p
E
S; (19)

where D D diag.k3=
p
E; � � � ; kn=

p
E/ for kj de�ned in (9). The symbol adj.M.E//

denotes the adjoint ofM.E/. In particular, the transmission amplitude is

T.E/ D �2ŒM.E/�21
1C Tr.M.E//C det.M.E//

: (20)
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Oncewe have derived formula (20), our next goal is to �nd requirements on S and
T to satisfy conditions (6)–(8). We may assume without loss of generality that the
controlling lines are given numbers 3; : : : ; q for a certain q 2 Œ3; : : : ; n�, and edges
nos. q C 1; : : : ; n represent drains. We write the matrix T 2 C2;n�2 accordingly in
the way

T D
�
v1 w1
v2 w2

�
(21)

with v1; v2 2 C1;q�2 andw1; w2 2 C1;n�q, where q�2 is the number of controllers.
We start from condition (8), i.e., limE!1 T.E/ D 0. Since limE!1D D I , equa-
tion (19) gives

lim
E!1

M.E/ D T T � D
 

kv1k2 C kw2k2 v1v
�
2 C w1w

�
2

v2v
�
1 C w2w

�
1 kv2k2 C kw2k2

!
:

Matrix T T � is Hermitian and positive-de�nite; thus

lim
E!1

det.M.E// > 0 and lim
E!1

Tr.M.E// > 0:

Consequently, with regard to equation (20), we have limE!1 T.E/ D 0 if and only if

v2v
�
1 C w2w

�
1 D 0: (22)

Now we proceed to condition (6). If the controlling lines support a potential V , the
matrix D for energies E 2 .0; V / equals

D D
0
@i
r
V

E
� 1 � I .q�2/ 0

0 I .n�q/

1
A :

Formula (20) gives the transmission amplitude for E 2 .0; V / in the form

T.E/ D
�2
�
w2w

�
1 C i

r
V

E
� 1 � v2v�

1 C ip
E
s21

�

aC b � i
r
V

E
� 1C c �

�V
E

� 1
�

C d �
r
V

E2
� 1

E
C f � ip

E
C g

E
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with

a D 1C kw1k2 C kw2k2 C kw1k2 � kw2k2 � jw2w�
1 j2;

b D kv1k2 C kv2k2 C kw1k2 � kv2k2
C kv1k2 � kw2k2 � v2v

�
1w1w

�
2 �w2w�

1v1v
�
2 ;

c D �kv1k2 � kv2k2 C jv2v�
1 j2;

d D �s11kv2k2 � s22kv1k2 C 2<.s21v1v�
2 /;

f D Tr.S/C s11kw2k2 C s22kw1k2 � 2<.s21w1w�
2 /;

g D � det.S/:

Expressions for b and T.E/ can be simpli�ed using equation (22),

b D kv1k2 C kv2k2 C kw1k2 � kv2k2 C kv1k2 � kw2k2 C 2jv2v�
1 j2;

T.E/ D
2
�
1 � i

r
V

E
� 1

�
v2v

�
1 � 2

ip
E
s21

aC b � i
r
V

E
� 1C c �

�V
E

� 1
�

C d �
r
V

E2
� 1

E
C f � ip

E
C g

E

:

(23)

Lemma 6.1. Condition (6) implies v2v�
1 ¤ 0.

Proof. We prove the statement by showing that v2v�
1 D 0 contradicts (6). Equation

v2v
�
1 D 0 implies w2w�

1 D 0 due to equation (22). Therefore, for all E 2 .0; V /,

T.E/ D
�2 ip

E
s21

aC b � i
r
V

E
� 1C c �

�V
E

� 1
�

C d �
r
V

E2
� 1

E
C f � ip

E
C g

E

:

Note that a D 1Ckw1k2Ckw2k2Ckw1k2 �kw2k2 ¤ 0. Therefore, function jT.E/j2
is either identically zero (for s21 D 0), or non-constant. In both cases condition (6)
is violated.
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With regard to Lemma 6.1, we may assume

v1 ¤ 0; v2 ¤ 0; w1 ¤ 0; w2 ¤ 0: (24)

We see from the structure of the numerator and the denominator in equation (23) that
satisfying condition (6) for all E < V requires

c D 0; d D 0; g D 0; jaj D jbj; f

b
D s21

v2v
�
1

(25)

(where jaj D jbj is equivalent to a D b, because both a and b are obviously positive).
Indeed, when (25) hold true, we have

T.E/ D 2v2v
�
1

a
�
1� i

�q
V
E

� 1C s21

v2v
�
1

� 1p
E

�

1C i
�q

V
E

� 1C s21

v2v
�
1

� 1p
E

� for all E 2 .0; V / I

hence

P.E/ D
� 2jv2v�

1 j
1C kw1k2 C kw2k2 C kw1k2 � kw2k2 � jv2v�

1 j2
�2

D const: (26)

for E 2 .0; V /. Now we will examine the system of conditions (25). We start from
equation c D 0, which is equivalent to

kv1k2 � kv2k2 D jv2v�
1 j2: (27)

Due to Cauchy–Schwarz inequality, v1; v2 are linearly dependent vectors. Further-
more, equation (22) together with (27) implies

jw2w�
1 j D kv1k � kv2k: (28)

Let us proceed to another condition from (25), jaj D jbj. By virtue of equation (28),
we can rewrite jaj D jbj in the form

1C kw1k2 C kw2k2 C kw1k2 � kw2k2 � kv1k2kv2k2

D kv1k2 C kv2k2 C kw1k2 � kv2k2 C kv1k2 � kw2k2 C 2kv1k2kv2k2;
which is equivalent to

.1C kw1k2 � kv1k2/.1C kw2k2 � kv2k2/ D 4kv1k2kv2k2: (29)

We continue to condition g D 0, which gives

js21j D
p

js11s22j: (30)
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We proceed in (25) to condition f=b D s21=.v2v
�
1 /. This condition implies in particular

that s21=.v2v
�
1 / 2 R. If we combine this fact with equations (30) and (27), we �nd

s21 D ˙
p

js11s22j v2v
�
1

kv2k � kv1k : (31)

Result (31) gives s21=v2v
�
1 D ˙pjs11s22j=.kv1k�kv2k/. Therefore, condition f=b D

s21=.v2v
�
1
/ is equivalent to ˙f � kv1k � kv2j D b

p
js11s22j, i.e.,

˙ .Tr.S/C s11kw2k2 C s22kw1k2 � 2<.s21w1w�
2 // � kv1k � kv2k

D .kv1k2 C kv2k2 C kw1k2 � kv2k2 C kv1k2 � kw2k2 C 2jw2w�
1 j2/

p
js11s22j:

(32)

We use equations (22) and (31) to rewrite s21w1w�
2 D �s21v1v�

2 D �
p

js11s22j �
kv1k � kv2k. Similarly, we rewrite term jw2w�

1 j2 on the right hand side of (32) using
equation (28). As a result of these operations certain terms in equation (32) cancel,
and we get

˙ .s11.1C kw2k2/C s22.1C kw1k2// � kv1k � kv2k
D .kv1k2.1C kw2k2/C kv2k2.1C kw1k2// �

p
js11s22j:

(33)

The last condition among (25) to be examined is d D 0. We substitute for s21 from
equation (31) into the expression for d ; then d D 0 is equivalent to

� s11kv2k2 � s22kv1k2 ˙ 2
p

js11s22j � kv1k � kv2k D 0: (34)

Now we will examine equation (34) using equation (33). We distinguish three cases.

Case s11s22 D 0. In this case equation (34) together with (24) implies s11 D
s22 D 0. Hence S D 0 due to equation (30). Consequently, condition (33) is always
satis�ed for s11s22 D 0.

Case s11s22 > 0. Equation (34) is equivalent to

.
p

js11jkv2k � sgn.s11/
p

js22jkv1k/2 D 0;

hence, due to (24),

˙ sgn.s11/ D 1 and

r
s11

s22
D kv1k

kv2k
: (35)
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Similarly, equation (33) is equivalent to

˙ sgn.s11/.js11j.1C kw2k2/C js22j.1C kw1k2//kv1k � kv2k
D .kv1k2.1C kw2k2/C kv2k2.1C kw1k2// �

p
js11s22j:

(36)

When we substitute relations (35) into equation (36), we get an identity. In other
words, condition (33) is always satis�ed for s11s22 > 0.

Case s11s22 < 0. Equation (34) is equivalent to

.
p

js11jkv2k C .
p
2� sgn.s11//

p
js22jkv1k/

.
p

js11jkv2k � .
p
2˙ sgn.s11//

p
js22jkv1k/ D 0

hence s
js11j
js22j D .

p
2˙ sgn.s11//

kv1k
kv2k : (37)

Equation (33) is equivalent to

˙ sgn.s11/.js11j.1C kw2k2/ � js22j.1C kw1k2//kv1kkv2k
D .kv1k2.1C kw2k2/C kv2k2.1C kw1k2// �

p
js11s22j:

(38)

When we use relation (37) in equation (38), we get the equation

˙ sgn.s11/
p
2.kv1k2.1C kw2k2/ � kv2k2.1C kw1k2// D 0:

Hence
kv1k2

1C kw1k2 D kv2k2
1C kw2k2 : (39)

We apply equivalence (39) in equation (29) and get

.1C kw1k2 � kv1k2/2 D 4kv1k4 I
hence

kw1k2 D 3kv1k2 � 1; kw2k2 D 3kv2k2 � 1: (40)

At this stage we have �nished the study of conditions (8) and (6). It remains to
check condition (7). It is straightforward to derive the formula

P.E/ D
� 2jv2v�

1 j
.1C kw1k2/.1C kw2k2/ � jw2w�

1 j2
�2

�
1 �

r
1� V

E

�2
C js21j2

kv1k2kv2k2
� 1
E

�
1C

r
1� V

E

�2
C js21j2

kv1k2kv2k2
� 1
E

for all E > V . It is easy to verify that limE&V P0.E/ D �1.
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Let us summarize the results in the following theorem.

Theorem 6.2. Consider a star graph with a vertex coupling described by boundary
conditions (17). The transmission probability in the input-output channel satis�es
conditions (6)–(8) if and only if vectors v1 and v2 in matrix T (21) are linearly de-
pendent, vectors w1; w2 obey requirements (22) and (29), and one of the following
three cases holds true:

• S D 0I

• s11s22 > 0 and

r
s11

s22
D kv1k

kv2k ; s21 D sgn.s11/ � p
s11s22

v2v
�
1

kv1k � kv2kI

• s11s22 < 0, condition (40) is satis�ed, and matrix S obeys conditions

s
js11j
js22j

D .
p
2˙ sgn.s11/ � 1/kv1kkv2k

and

s21 D ˙
p

js11s22j v2v
�
1

kv1k � kv2k
:

An example of transmission probability function for S; T chosen according to
Theorem 6.2 is shown in Figure 3.

Figure 3. An example of a transmission probability featuring a �at passband. The
function is obtained for the choice kv1k2 D 5=8, v2 D v1, kw1k2 D kw2k2 D 7=8,
jw2w�

1 j2 D 5=8, S D 0 and for the controlling potential V D 1.
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Theorem 6.2 describes the structure of matrices S; T in boundary conditions (17)
for which the star graph works as a band-pass �lter with a �at passband. In the rest
of the section we will �nd the maximal possible value of jT.E/j in the “�at band” in-
terval .0; V /, and we will characterize the corresponding matrices S; T . With regard
to equation (26), we have to �nd the maximum of the quantity

� 2jv2v�
1 j

1C kw1k2 C kw2k2 C kw1k2 � kw2k2 � jw2w�
1 j2

�2
(41)

under conditions given in Theorem 6.2. Note that the expression (41) is independent
of S , and the entries of S can be calculated after T is �xed. Therefore, we will at
�rst �nd the maximum of expression (41) under conditions (22) and (29), whereas
matrix S will be calculated later. We denote

kw1k2 D x; kw2k2 D y; kv1k2 D z;

and
jv2v�

1 j2 D xyu for a certain u 2 .0; 1�;
which is possible due to jv2v�

1 j2 D jw2w�
1 j2 � kw1k2 � kw2k2. We express kv2k2

using equations (22) and (27),

kv2k2 D kv1k2 � kv2k2
kv1k2

D jv2v�
1 j2

kv1k2
D jw2w�

1 j2
kv1k2

D xyu

z
:

We shall �nd the maximum of the function

F.x; y; z; u/ D
� 2

p
xyu

1C x C y C xy � xyu
�2

(cf. (41)) under condition (29), i.e.,

.1C x � z/
�
1C y � xyu

z

�
D 4xyu:

We proceed in a standard way. We introduce the Langrage function

L.x; y; z; u; �/

D 2
p
xyu

1C x C y C xy � xyu � � �
h
.1C x � z/

�
1C y � xyu

z

�
� 4xyu

i

and solve the system

@L

@x
D 0;

@L

@y
D 0;

@L

@z
D 0;

@L

@u
D 0: (42)
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It turns out that (42) has no solution. Therefore, we shall search for the maximum of
F at the boundary of its domain, i.e., for u D 1. If we �x u D 1 and solve the system
@L=@x D @L=@y D @L=@z D 0, we obtain

x D y D z D 1

2
:

Hence we �nd the sought maximum of the function F ,

F

�
1

2
;
1

2
;
1

2
; 1

�
D 1

4
:

Note that u D 1 implies jw2w�
1 j D kw1k � kw2k, i.e., w1; w2 are linearly dependent.

Theorem 6.3. The maximal transmission probability of a band-pass �lter with �at
passband, constructed upon a vertex with boundary conditions (17), is 1=4. It is ob-
tained for

T D
�
v w

˛v �˛w
�

for kvk D kwk D 1p
2
; j˛j D 1; (43)

and

S D s

�
1 N̨
˛ 1

�
or S D s

�
1˙ p

2 N̨
˛ 1� p

2

�
for s 2 R: (44)

Proof. According to calculations above, the maximal transmission probability is 1=4,
and this value is attained for kv1k D kv2k D kw1k D kw2k D 1=

p
2. Vectors v1; v2

are linearly dependent due to Theorem 6.2; hence v2 D ˛ � v1 for an ˛ satisfying
j˛j D 1. Equation (22) implies w2 D �˛ � w1. Furthermore, equations listed in
Theorem 6.2 imply that either S D 0, or the entries of S satisfy

s11 D s22 D s; s21 D s � ˛

for a certain s ¤ 0, or

s11 D s � .
p
2˙ sgn.s/ � 1/

s22 D �s � .
p
2� sgn.s/ � 1/

s21 D ˙jsj � ˛

for a certain s ¤ 0. It is easy to check that all the cases above are fully covered by
formulas (44).
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Figure 4 shows two examples of the transmission probability functions obtained
for S; T obeying conditions from Theorem 6.3.

Figure 4. The maximal transmission probability in the passband for the controlling
potential V D 1. The graphs display the function P.E/ for T given by equation (43)
and S D �

0 0
0 0

�
(left) and S D 1=2

�
1 1
1 1

�
(right).

Remark 6.4. Matrix T given by equation (43) together with S D 0 generalizes an
earlier result. In [11], a graph consisting of the input, output, one controlling edge
and one drain, coupled in a vertex by scale invariant boundary conditions with

T D 1p
2

�
1 1

1 �1
�
;

was examined. It was demonstrated that the transmission probability is constant in
the interval .0; V / and quickly decreases towards zero as E exceeds the controlling
potential V . Theorem 6.3 implies that the �at-band behaviour persists even if the
scale invariance of the coupling is broken. This is a quite surprising fact.

7 Case r � 3

The ideas demonstrated in previous sections can be used for treating vertex couplings
with r D rank.B/ � 3 as well. Section 5 implies that if the sought band-pass �lter
with �at passband exists, then the columns of B that correspond to the input and
output line need to be linearly independent. This allows us to express the boundary
conditions in the vertex in the ST -form as follows,

0
@
I .2/ 0 T1
0 I .r�2/ T2
0 0 0

1
A
 
‰0
io

‰0
cd

!
D
0
@
S1 S2 0

S�
2 S4 0

�T �
1 �T �

2 I .n�r/

1
A
 
‰io

‰cd

!
; (45)



On quantum graph �lters with �at passbands 561

where ‰io; ‰0
io are the boundary values at input and output (cf. (12)), ‰cd; ‰

0
cd are

the boundary values at controlling lines and drains (controlling edges and drains not
being distinguished now), I .2/; I .r�2/; I .n�r/ are identity matrices of given orders,

T D
�
T1

T2

�
2 Cr;n�r and

�
S1 S2

S�
2 S4

�
is a Hermitian r � r matrix.

Relation (10) implies

‰0
cd D i

�
K2 0

0 K3

�
‰cd; (46)

whereK2 D diag.k3; : : : ; kr/ andK3 D diag.krC1; : : : ; kn/. Elimination of‰cd and
‰0

cd from system (45) using equation (46) leads to the conditions (11) with Bdiss D I

and

Adiss D iT1K3T �
1 � S1

� .S2 � iT1K3T �
2 /.iK2 C iT2K3T �

2 � S4/�1.S�
2 � iT2K3T �

1 /:

Formula (4) gives the dissipative scattering matrix

Sdiss.E/ D �I C 2

1C Tr.M.E//C det.M.E//
adj.M.E//; (47)

where the matrixM.E/ is given as

M.E/ D T1D3T
�
1 C ip

E
S1 �

� ip
E
S2 C T1D3T

�
2

�

�
D2 C T2D3T

�
2 C ip

E
S4

��1

� ip
E
S�
2 C T2D3T

�
1

�

with D2 D diag .k3=
p
E ; : : : ; kr=

p
E/ andD3 D diag .krC1=

p
E ; : : : ; kn=

p
E/. Conse-

quently, the transmission amplitude is

T.E/ D �2ŒM.E/�21
1C Tr.M.E//C det.M.E//

: (48)

We require limE!1 T.E/ D 0 according to (8). Since we have limE!1D2 D I

and limE!1D3 D I , we get

lim
E!1

M.E/ D T1T
�
1 � T1T �

2

�
I C T2T

�
2

��1
T2T

�
1 D T1

�
I C T �

2 T2
��1

T �
1 :

The matrix on the right hand side is Hermitian and positive-de�nite. The denomi-
nator of (47) thus tends to a positive number greater than 1 as E ! 1. Therefore,
equation (48) gives the equivalence

lim
E!1

T.E/ D 0 () T1.I C T �
2 T2/

�1T �
1 is diagonal:
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To sum up, a quantum star graph with the vertex coupling given by boundary condi-
tions (45) can work as a band-pass �lter with �at passband only if T1.ICT �

2 T2/
�1T �

1

is a diagonal matrix.
Analyzing condition (6) needs to distinguish controllers and drains in both sets

¹3; : : : ; rº and ¹rC 1; : : : ; nº, which would make the problem more intricate. There-
fore, the case r � 3 in general will not be addressed in this paper; nevertheless, the
method presented in Sections 4–6 is in principle applicable.

Remark 7.1. Although we focused on graphs working as spectral band-pass �lters
with �at passbands, the same approach can be used more generally. Taking advantage
of the ST -form of boundary conditions, one can explore and design quantum graphs
with various other special transmission characteristics, such as �lters having a sharp
peak in P.E/ at a certain energy.
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Comments on the Chernoff
p

n-lemma

Valentin A. Zagrebnov

Dedicated to Pavel Exner in occasion of his 70th birthday

1 Introduction:
p

n-lemma

The Chernoff
p
n-lemma is a key point in the theory of semigroup approximations

proposed in [3]. For the reader’s convenience we recall this lemma below.

Lemma 1.1. Let C be a contraction on a Banach space X. Then ¹et.C�1ºt�0 is a
norm-continuous contraction semigroup on X and one has the estimate

k.C n � en.C�1//xk � p
n k.C � 1/xk; (1)

for all x 2 X and n 2 N.

Proof. To prove the inequality (1) we use the representation

C n � en.C�1/ D e�n
1X

mD0

nm

mŠ
.C n � Cm/: (2)

To proceed we insert

k.C n � Cm/xk � k.C jn�mj � 1/xk � jm � njk.C � 1/xk;

into (2) to obtain by the Cauchy–Schwarz inequality the estimate

k.C n � en.C�1//xk � k.C � 1/xk e�n
1X

mD0

nm

mŠ
jm � nj

�
° 1X

mD0
e�n nm

mŠ
jm � nj2

±1=2

k.C � 1/xk; x 2 X:

(3)

Note that the sum in the right-hand side of (3) can be calculated explicitly. This gives
the value n, which yields (1).
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The aim of the present note is to revise the Chernoff
p
n-lemma in two directions.

First, we improve the
p
n-estimate (1) for contractions. Then we apply this new

estimate to the proof of the Trotter product formula in the strong operator topology
(Section 2).

Second, we use the idea of Section 2 to lift these results in Section 3 to the
operator-norm estimates for a special class of contractions: the quasi-sectorial con-
tractions.

2 Revised
p

n-lemma and Lie–Trotter product formula

We start by a technical lemma. It is a revised version of the Chernoff
p
n-lemma 1.1.

Our estimate (4) in 3
p
n-lemma 2.1 is better than (1). The scheme of the proof will be

useful later (Section 3), when we use it for proving the convergence of Lie–Trotter
product formula in the operator-norm topology.

Lemma 2.1. Let C be a contraction on a Banach space X. Then ¹et.C�1ºt�0 is a
norm-continuous contraction semigroup on X and one has the estimate

k.C n � en.C�1//xk �
h 1
n2ı

C nıC1=2
i
k.1 � C/xk; n 2 N: (4)

for all x 2 X and ı 2 R.

Proof. Since the operator C is bounded and kCk � 1, .1 � C/ is a generator of the
norm-continuous semigroup, which is also a contraction:

ke t.C�1/k � e�t


1X

mD0

tm

mŠ
Cm

 � 1; t � 0:

To estimate (4) we use the representation

C n � en.C�1/ D e�n
1X

mD0

nm

mŠ
.C n � Cm/: (5)

Let �n WD nıC1=2, n 2 N. We split the sum (5) into two parts: the central part for
jm � nj � �n and tails for jm � nj > �n.

To estimate the tails we use the Tchebychev inequality. Let Xn be a Poisson
random variable of the parameter n, i.e., the probability P¹Xn D mº D nme�n=mŠ.
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One obtains for the expectation E.Xn/ D n and for the variance Var.Xn/ D n. Then
by the Tchebychev inequality,

P¹jXn � E.Xn/j > �º � Var.Xn/

�2
; for any � > 0:

Now to estimate (5) we note that

k.C n � Cm/xk D kC n�k.C k � Cm�nCk/xk
� jm � njkC n�k.1 � C/xk; k D 0; 1; : : : ; n:

Put in this inequality k D Œ�n�, here Œ�� denotes the integer part. Then by kCk � 1

and by the Tchebychev inequality we obtain the estimate for tails:

e�n X

jm�nj>�n

nm

mŠ
k.C n � Cm/xk � k.1 � C/xk e�n X

jm�nj>�n

nm

mŠ
jm � nj

� n

�2n
k.1 � C/xk

D 1

n2ı
k.1 � C/xk:

(6)

To estimate the central part of the sum (5), when jm � nj � �n, note that

k.C n � Cm/xk � jm � nj kC n�Œ�n�.1 � C/xk
� �n k.1 � C/xk:

(7)

Then we obtain

e�n X

jm�nj��n

nm

mŠ
k.C n � Cm/xk � nıC1=2 k.1 � C/xk;

for n 2 N. This last estimate together with (6) yield (4).

Note that for ı D 0 the estimate (4) gives for large n the same asymptotic as the
Chernoff

p
n-lemma, whereas for optimal value ı D .�1=6/ the asymptotic 2 3

p
n is

better than (1). We call this result the 3
p
n-lemma.

Theorem 2.2. Let ˆW t 7! ˆ.t/ be a function from RC to contractions on X such
that ˆ.0/ D 1. Let ¹UA.t /ºt�0 be a contraction semigroup, and letD � dom.A/ be
a core of the generator A. If the function ˆ.t/ has a strong right-derivative ˆ0.C0/
at t D 0 and

ˆ0.C0/u WD lim
t!C0

1

t
.ˆ.t/ � 1/u D �Au;
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for all u 2 D, then
lim
n!1Œˆ.

t=n/�n x D UA.t / x; (8)

for all t 2 RC and x 2 X

Proof. Consider the bounded approximation An of generator A:

An.s/ WD 1 �ˆ.s=n/
s=n

:

This operator is accretive: .An.s/ C �1/�1 2 L.X/ and k.An.s/ C �1/�1k �
.Re.�//�1 for Re.�/ > 0, and

lim
n!1An.s/ u D Au;

for all u 2 D and for bounded s. Therefore, by virtue of the Trotter–Neveu–Kato
generalised strong convergence theorem one gets:

lim
n!1 e�t An.s/ x D UA.t / x; (9)

i.e., the strong and the uniform in t and s convergence (9) of the approximants
¹e�t An.s/ºn�1 for s 2 .0; s0�. By Lemma 2.1 for contraction C WD ˆ.t=n/ and
for An.s/jsDt we obtain

kŒˆ.t=n/�n x � e�t An.t/ xk D k.Œˆ.t=n/�n � en.ˆ.t=n/�1// xk

� 2

n2ı
kxk C nıC1=2k.1 �ˆ.t=n// xk:

(10)

Since for any u 2 D and uniformly on Œ0; t0� one gets

lim
n!1nıC1=2k.1 �ˆ.t=n// uk D lim

n!1 t nı�1=2kAn.t / uk D 0; (11)

for ı < 1=2, equations (10) and (11) imply

lim
n!1 kŒˆ.t=n/�n u � e�t An.t/ uk D 0; u 2 D: (12)

Then (9) and (12) together with estimate kŒˆ.t=n/�n� e�t An.t/k � 2 yield uniformly
in t 2 Œ0; t0�:

lim
n!1Œˆ.

t=n/�n x D UA.t / x;

which by density ofD is extended to all x 2 X, cf. (8).

We call (8) the (strong) Chernoff approximation formula for the semigroup
¹UA.t /ºt�0.
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Proposition 2.3 (Lie–Trotter product formula [3]). Let A, B and C be generators of
contraction semigroups on X. Suppose that algebraic sum

Cu D AuC Bu; (13)

is valid for all vectors u in a core D � domC . Then the semigroup ¹UC .t /ºt�0
can be approximated on X in the strong operator topology (10) by the Lie–Trotter
product formula:

e�tCx D lim
n!1.e

�tA=ne�tB=n/n x; x 2 X; (14)

for all t 2 RC and forC WD .AC B/, which is the closure of the algebraic sum (13).

Proof. Let us de�ne the contraction RC 3 t 7! ˆ.t/, ˆ.0/ D 1, by

ˆ.t/ WD e�tAe�tB :

Note that if u 2 D, then derivative

ˆ0.C0/u D lim
t!C0

1

t
.ˆ.t/� 1/ u D �.AC B/ u:

Nowwe are in position to apply Theorem 2.2. This yields (14) forC WD .AC B/.

Corollary 2.4. Extension of the strong convergent Lie–Trotter product formula of
Proposition 2.3 to quasi-bounded and holomorphic semigroups goes through verba-
tim.

3 Quasi-sectorial contractions and . 3
p

n/�1-theorem

De�nition 3.1 ([2]). A contraction C on the Hilbert spaceH is called quasi-sectorial
with semi-angle ˛ 2 Œ0; �=2/with respect to the vertex at z D 1, if its numerical range
W.C/ � D˛. Here

D˛ WD ¹z 2 CW jzj � sin˛º [ ¹z 2 CW j arg.1� z/j � ˛ and jz � 1j � cos˛º:

We comment thatD˛D�=2 D D (unit disc) and recall that a general contraction C
veri�es the weaker condition: W.C/ � D.
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Note that if operatorC is a quasi-sectorial contraction, then 1�C is anm-sectorial
operator with vertex z D 0 and semi-angle ˛. Then for C the limits: ˛ D 0 and ˛ D
�=2, correspond respectively to self-adjoint and to standard contractions whereas for
1�C they give a non-negative self-adjoint and anm-accretive (bounded) operators.

The resolvent of anm-sectorial operatorA, with semi-angle ˛ 2 Œ0; ˛0�, ˛0 < �=2,
and vertex at z D 0, gives an example of the quasi-sectorial contraction.

Proposition 3.2 ([2] and [6]). IfC is a quasi-sectorial contraction on aHilbert space
H with semi-angle 0 � ˛ < �=2, then

kC n.1 � C/k � K

nC 1
; n 2 N: (15)

The property (15) implies that the quasi-sectorial contractions belong to the class
of the so-called Ritt operators [5]. This allows us to go beyond the 3

p
n -lemma 2.1

to the . 3
p
n/�1-theorem.

Theorem 3.3 (. 3
p
n/�1-theorem). Let C be a quasi-sectorial contraction on H with

numerical range W.C/ � D˛, 0 � ˛ < �=2. Then

kC n � en.C�1/k � M

n1=3
; n D 1; 2; 3; : : :

whereM D 2K C 2 and K is de�ned by (15).

Proof. Note that with help of inequality (15) we can improve the estimate (7) in
Lemma 2.1:

kC n � Cmk � jm � njkC n�Œ�n�.1 � C/k � �n
K

n � Œ�n�C 1
;

for �n D nıC1=2. Then for ı < 1=2 there the above inequality together with (6) give
instead of (4) (or (1)) the operator-norm estimate

kC n � en.C�1/k � 2

n2ı
C 2K

n1=2�ı ; n 2 N: (16)

Then the estimate M=.n1=3/ of the Theorem 3.3 results from the optimal choice of the
value: ı D 1=6, in (16).

Similar to . 3
p
n/-lemma, this . 3

p
n/�1-theorem is only the �rst step in develop-

ing the operator-norm approximation formula à la Chernoff. To this end one needs
an operator-norm analogue of Theorem 2.2. Since the last includes the Trotter–
Neveu–Kato strong convergence theorem, we need the operator-norm extension of
this assertion to quasi-sectorial contractions.
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Proposition 3.4 ([2]). Let ¹X.s/ºs>0 be a family of m-sectorial operators in a Hilbert
space H with W.X.s// � S˛ for some 0 < ˛ < �=2 and for all s > 0. Let X0 be an
m-sectorial operator de�ned in a closed subspaceH0 � H, withW.X0/ � S˛ . Then
the two following assertions are equivalent:

(a) lims!C0 k.�1 CX.s//�1 � .�1 CX0/
�1P0k D 0, for � 2 S��˛ ,

(b) lims!C0 ke�tX.s/ � e�tX0P0k D 0, for t > 0.

Here P0 denotes the orthogonal projection from H onto H0.

Now . 3
p
n/�1-theorem 3.3 and Proposition 3.4 yield a desired generalisation of

the operator-norm approximation formula:

Proposition 3.5 ([2]). Let ¹ˆ.s/ºs�0 be a family of uniformly quasi-sectorial
contractions on a Hilbert space H, i.e. such that there exists 0 � ˛ < �=2 and
W.ˆ.s// � D˛ , for all s � 0. Let

X.s/ WD 1 �ˆ.s/
s

;

and let X0 be a closed operator with non-empty resolvent set, de�ned in a closed
subspace H0 � H. Then the family ¹X.s/ºs>0 converges, when s ! C0, in the
uniform resolvent sense to the operator X0 if and only if

lim
n!1 kˆ.t=n/n � e�tX0P0k D 0; for t > 0:

Here P0 denotes the orthogonal projection onto the subspace H0.

Let A be an m-sectorial operator with semi-angle 0 < ˛ < �=2 and with vertex
at 0, which means that numerical range W.A/ � S˛ D ¹z 2 CW j arg.z/j � ˛º.
Then ¹ˆ.t/ WD .1 C tA/�1ºt�0 is the family of quasi-sectorial contractions, i.e.,
W.ˆ.t// � D˛ . LetX.s/ WD .1�ˆ.s//=s, s > 0, and X0 WD A. Then X.s/ converges,
when s ! C0, to X0 in the uniform resolvent sense with the asymptotic

k.�1 CX.s//�1 � .�1 CX0/
�1k D s


A

�1 C AC �sA
� A

�1 C A

 D O.s/;

for any � 2 S��˛ , since we have the estimate


A

�1 C AC �sA
� A

�1 C A



�
�
1C j�j

dist.�.1C s�/�1;�S˛/
��
1C j�j

dist.�;�S˛/
�
:
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Therefore, the family ¹ˆ.t/ºt�0 satis�es the conditions of Proposition 3.5. This
implies the operator-norm approximation of the exponential function, i.e., the semi-
group form-sectorial generator, by the powers of resolvent (the Euler approximation
formula):

Corollary 3.6. If A is anm-sectorial operator in a Hilbert spaceH, with semi-angle
˛ 2 .0; �=2/ and with vertex at 0, then

lim
n!1 k.1 C tA=n/�n � e�tAk D 0; t 2 S�=2�˛: (17)

4 Conclusion

Summarising we note that for the quasi-sectorial contractions instead of divergent
Chernoff’s estimate (1) we �nd the estimate (16), which converges for n ! 1 to
zero in the operator-norm topology. Note that the rateO.1=.n1=3// of this convergence
is obtained with help of the Poisson representation and the Tchebychev inequality in
the spirit of the proof of Lemma 2.1, and that it is not optimal.

The estimate M=.n1=3/ in the . 3
p
n/�1-theorem 3.3 can be improved by a more

re�ned lines of reasoning.
For example, by scrutinising our probabilistic arguments one can �nd a more pre-

cise Tchebychev-type bound for the tail probabilities. This improves the estimate (16)
to the rate O.

p
ln.n/=n/, see [4].

On the other hand, a careful analysis of localisation the numerical range of quasi-
sectorial contractions (see [6] and [1]) allows us to lift the estimate in Theorem 3.3
and in Corollary 3.6 to the ultimate optimal rate O.1=n/.

Note that the optimal estimate O.1=n/ in (16) one can easily obtain with help of
the spectral representation for a particular case of the self-adjoint quasi-sectorial con-
tractions, i.e., for ˛ D 0. This also concerns the optimal O.1=n/ rate of convergence
of the self-adjoint Euler approximation formula (17).
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Ari Laptev

Editors

Functional Analysis  
and Operator Theory for  
Quantum Physics 
The Pavel Exner Anniversary Volume

Jaroslav Dittrich, Hynek Kovařík and Ari Laptev, Editors
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